ppca | R Documentation |
These functions are designed to perform a phylogenetic principal component analysis (pPCA, Jombart et al. 2010) and to display the results.
ppca(
x,
prox = NULL,
method = c("patristic", "nNodes", "oriAbouheif", "Abouheif", "sumDD"),
f = function(x) {
1/x
},
center = TRUE,
scale = TRUE,
scannf = TRUE,
nfposi = 1,
nfnega = 0
)
## S3 method for class 'ppca'
scatter(x, axes = 1:ncol(x$li), useLag = FALSE, ...)
## S3 method for class 'ppca'
print(x, ...)
## S3 method for class 'ppca'
summary(object, ..., printres = TRUE)
## S3 method for class 'ppca'
screeplot(x, ..., main = NULL)
## S3 method for class 'ppca'
plot(x, axes = 1:ncol(x$li), useLag = FALSE, ...)
x |
a phylo4d object (for |
prox |
a marix of phylogenetic proximities as returned by
|
method |
a character string (full or abbreviated without ambiguity)
specifying the method used to compute proximities; possible values are: |
f |
a function to change a distance into a proximity. |
center |
a logical indicating whether traits should be centred to mean zero (TRUE, default) or not (FALSE). |
scale |
a logical indicating whether traits should be scaled to unit variance (TRUE, default) or not (FALSE). |
scannf |
a logical stating whether eigenvalues should be chosen interactively (TRUE, default) or not (FALSE). |
nfposi |
an integer giving the number of positive eigenvalues retained ('global structures'). |
nfnega |
an integer giving the number of negative eigenvalues retained ('local structures'). |
axes |
the index of the principal components to be represented. |
useLag |
a logical stating whether the lagged components ( |
... |
further arguments passed to other methods. Can be used to
provide arguments to |
object |
a |
printres |
a logical stating whether results should be printed on the screen (TRUE, default) or not (FALSE). |
main |
a title for the screeplot; if NULL, a default one is used. |
ppca
performs the phylogenetic component analysis. Other functions
are:
- print.ppca
: prints the ppca content
- summary.ppca
: provides useful information about a ppca object,
including the decomposition of eigenvalues of all axes
- scatter.ppca
: plot principal components using
table.phylo4d
- screeplot.ppca
: graphical display of the decomposition of pPCA
eigenvalues
- plot.ppca
: several graphics describing a ppca object
The phylogenetic Principal Component Analysis (pPCA, Jombart et al., 2010) is
derived from the spatial Principal Component Analysis (spca, Jombart et al.
2008), implemented in the adegenet package (see
spca
).
pPCA is designed to investigate phylogenetic patterns a set of quantitative
traits. The analysis returns principal components maximizing the product of
variance of the scores and their phylogenetic autocorrelation (Moran's I),
therefore reflecting life histories that are phylogenetically structured.
Large positive and large negative eigenvalues correspond to global and local
structures.
The class ppca
are given to lists with the following
components:
eig |
a numeric vector of eigenvalues. |
nfposi |
an integer giving the number of global structures retained. |
nfnega |
an integer giving the number of local structures retained. |
c1 |
a data.frame of loadings of traits for each axis. |
li |
a data.frame of coordinates of taxa onto the ppca axes (i.e., principal components). |
ls |
a data.frame of lagged prinpal components; useful to represent of global scores. |
as |
a data.frame giving the coordinates of the axes of an 'ordinary' PCA onto the ppca axes. |
call |
the matched call. |
tre |
a phylogenetic tre with class phylo4. |
prox |
a matrix of phylogenetic proximities. |
Other functions have different outputs:
- scatter.ppca
returns the matched call.
Thibaut Jombart tjombart@imperial.ac.uk
Jombart, T.; Pavoine, S.; Dufour, A. & Pontier, D. (2010, in press) Exploring phylogeny as a source of ecological variation: a methodological approach. doi:10.1016/j.jtbi.2010.03.038
Jombart, T., Devillard, S., Dufour, A.-B. and Pontier, D. (2008) Revealing cryptic phylogenetic patterns in genetic variability by a new multivariate method. Heredity, 101, 92–103.
The implementation of spca
in the adegenet
package (adegenet
)
data(lizards)
if(require(ape) && require(phylobase)){
#### ORIGINAL EXAMPLE FROM JOMBART ET AL 2010 ####
## BUILD A TREE AND A PHYLO4D OBJECT
liz.tre <- read.tree(tex=lizards$hprA)
liz.4d <- phylo4d(liz.tre, lizards$traits)
oldpar <- par(mar=rep(.1,4))
table.phylo4d(liz.4d,var.lab=c(names(lizards$traits),
"ACP 1\n(\"size effect\")"),show.node=FALSE, cex.lab=1.2)
## REMOVE DUPLICATED POPULATIONS
liz.4d <- prune(liz.4d, c(7,14))
table.phylo4d(liz.4d)
## CORRECT LABELS
lab <- c("Pa", "Ph", "Ll", "Lmca", "Lmcy", "Phha", "Pha",
"Pb", "Pm", "Ae", "Tt", "Ts", "Lviv", "La", "Ls", "Lvir")
tipLabels(liz.4d) <- lab
## REMOVE SIZE EFFECT
dat <- tdata(liz.4d, type="tip")
dat <- log(dat)
newdat <- data.frame(lapply(dat, function(v) residuals(lm(v~dat$mean.L))))
rownames(newdat) <- rownames(dat)
tdata(liz.4d, type="tip") <- newdat[,-1] # replace data in the phylo4d object
## pPCA
liz.ppca <- ppca(liz.4d,scale=FALSE,scannf=FALSE,nfposi=1,nfnega=1, method="Abouheif")
liz.ppca
tempcol <- rep("grey",7)
tempcol[c(1,7)] <- "black"
barplot(liz.ppca$eig,main='pPCA eigenvalues',cex.main=1.8,col=tempcol)
par(mar=rep(.1,4))
plot(liz.ppca,ratio.tree=.7)
## CONTRIBUTIONS TO PC (LOADINGS) (viewed as dotcharts)
dotchart(liz.ppca$c1[,1],lab=rownames(liz.ppca$c1),main="Global principal
component 1")
abline(v=0,lty=2)
dotchart(liz.ppca$c1[,2],lab=rownames(liz.ppca$c1),main="Local principal
component 1")
abline(v=0,lty=2)
## REPRODUCE FIGURES FROM THE PAPER
obj.ppca <- liz.4d
tdata(obj.ppca, type="tip") <- liz.ppca$li
myLab <- paste(" ",rownames(liz.ppca$li), sep="")
## FIGURE 1
par(mar=c(.1,2.4,2.1,1))
table.phylo4d(obj.ppca, ratio=.7, var.lab=c("1st global PC", "1st local
PC"), tip.label=myLab,box=FALSE,cex.lab=1.4, cex.sym=1.2, show.node.label=TRUE)
add.scatter.eig(liz.ppca$eig,1,1,1,csub=1.2, posi="topleft", ratio=.23)
## FIGURE 2
s.arrow(liz.ppca$c1,xlim=c(-1,1),clab=1.3,cgrid=1.3)
#### ANOTHER EXAMPLE - INCLUDING NA REPLACEMENT ####
## LOAD THE DATA
data(maples)
tre <- read.tree(text=maples$tre)
x <- phylo4d(tre, maples$tab)
omar <- par("mar")
par(mar=rep(.1,4))
table.phylo4d(x, cex.lab=.5, cex.sym=.6, ratio=.1) # note NAs in last trait ('x')
## FUNCTION TO REPLACE NAS
f1 <- function(vec){
if(any(is.na(vec))){
m <- mean(vec, na.rm=TRUE)
vec[is.na(vec)] <- m
}
return(vec)
}
## PERFORM THE PPCA
dat <- apply(maples$tab,2,f1) # replace NAs
x.noNA <- phylo4d(tre, as.data.frame(dat))
map.ppca <- ppca(x.noNA, scannf=FALSE, method="Abouheif")
map.ppca
## SOME GRAPHICS
screeplot(map.ppca)
scatter(map.ppca, useLag=TRUE)
plot(map.ppca, useLag=TRUE)
## MOST STRUCTURED TRAITS
a <- map.ppca$c1[,1] # loadings on PC 1
names(a) <- row.names(map.ppca$c1)
highContrib <- a[a< quantile(a,0.1) | a>quantile(a,0.9)]
datSel <- cbind.data.frame(dat[, names(highContrib)], map.ppca$li)
temp <- phylo4d(tre, datSel)
table.phylo4d(temp) # plot of most structured traits
## PHYLOGENETIC AUTOCORRELATION TESTS FOR THESE TRAITS
prox <- proxTips(tre, method="Abouheif")
abouheif.moran(dat[, names(highContrib)], prox)
par(oldpar)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.