Nothing
Tools for the multiscale spatial analysis of multivariate data. Several methods are based on the use of a spatial weighting matrix and its eigenvector decomposition (Moran's Eigenvectors Maps, MEM). Several approaches are described in the review Dray et al (2012) <doi:10.1890/11-1183.1>.
Package details |
|
---|---|
Author | Stéphane Dray [aut] (<https://orcid.org/0000-0003-0153-1105>), David Bauman [ctb], Guillaume Blanchet [ctb], Daniel Borcard [ctb], Sylvie Clappe [ctb], Guillaume Guenard [ctb] (<https://orcid.org/0000-0003-0761-3072>), Thibaut Jombart [ctb], Guillaume Larocque [ctb], Pierre Legendre [ctb] (<https://orcid.org/0000-0002-3838-3305>), Naima Madi [ctb], Hélène H Wagner [ctb], Aurélie Siberchicot [ctb, cre] (<https://orcid.org/0000-0002-7638-8318>) |
Maintainer | Aurélie Siberchicot <aurelie.siberchicot@univ-lyon1.fr> |
License | GPL (>= 2) |
Version | 0.3-24 |
URL | https://github.com/adeverse/adespatial http://adeverse.github.io/adespatial/ |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.