Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## -----------------------------------------------------------------------------
library(adestr)
get_example_design(two_armed = TRUE)
## -----------------------------------------------------------------------------
evaluate_estimator(
score = MSE(),
estimator = SampleMean(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = 0.3,
sigma = 1
)
## ----fig.width=7.2, fig.height=4, dev="svg"-----------------------------------
mse_mle <- evaluate_estimator(
score = MSE(),
estimator = SampleMean(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = seq(-0.75, 1.32, .03),
sigma = 1
)
mse_weighted_sample_means <- evaluate_estimator(
score = MSE(),
estimator = WeightedSampleMean(w1 = .8),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = seq(-0.75, 1.32, .03),
sigma = 1
)
plot(c(mse_mle, mse_weighted_sample_means))
## -----------------------------------------------------------------------------
evaluate_estimator(
score = OverestimationProbability(),
estimator = MedianUnbiasedMLEOrdering(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = 0.4,
sigma = 1
)
evaluate_estimator(
score = OverestimationProbability(),
estimator = MedianUnbiasedLikelihoodRatioOrdering(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = 0.4,
sigma = 1
)
evaluate_estimator(
score = OverestimationProbability(),
estimator = MedianUnbiasedScoreTestOrdering(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = 0.4,
sigma = 1
)
evaluate_estimator(
score = OverestimationProbability(),
estimator = MedianUnbiasedStagewiseCombinationFunctionOrdering(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = 0.4,
sigma = 1
)
## -----------------------------------------------------------------------------
evaluate_estimator(
score = OverestimationProbability(),
estimator = SampleMean(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = 0.4,
sigma = 1
)
## -----------------------------------------------------------------------------
evaluate_estimator(
score = MSE(),
estimator = SampleMean(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = 0.3,
sigma = 1
)
evaluate_estimator(
score = MSE(),
estimator = BiasReduced(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = 0.3,
sigma = 1
)
evaluate_estimator(
score = MSE(),
estimator = PseudoRaoBlackwell(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = 0.3,
sigma = 1
)
evaluate_estimator(
score = MSE(),
estimator = RaoBlackwell(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = 0.3,
sigma = 1
)
evaluate_estimator(
score = MSE(),
estimator = AdaptivelyWeightedSampleMean(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = 0.3,
sigma = 1
)
## -----------------------------------------------------------------------------
evaluate_estimator(
score = Coverage(),
estimator = NaiveCI(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = .07,
sigma = 1
)
## -----------------------------------------------------------------------------
evaluate_estimator(
score = Coverage(),
estimator = LikelihoodRatioOrderingCI(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = .07,
sigma = 1
)
## ----fig.width=7.2, fig.height=4, dev="svg"-----------------------------------
coverage_naive <- evaluate_estimator(
score = Coverage(),
estimator = NaiveCI(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = seq(-0.75, 1.32, .03),
sigma = 1
)
plot(coverage_naive)
## -----------------------------------------------------------------------------
evaluate_estimator(
score = Width(),
estimator = MLEOrderingCI(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = .3,
sigma = 1
)
evaluate_estimator(
score = Width(),
estimator = LikelihoodRatioOrderingCI(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = .3,
sigma = 1
)
evaluate_estimator(
score = Width(),
estimator = ScoreTestOrderingCI(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = .3,
sigma = 1
)
evaluate_estimator(
score = Width(),
estimator = StagewiseCombinationFunctionOrderingCI(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = .3,
sigma = 1
)
## -----------------------------------------------------------------------------
evaluate_estimator(
score = Centrality(interval = StagewiseCombinationFunctionOrderingCI()),
estimator = SampleMean(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = .3,
sigma = 1
)
evaluate_estimator(
score = Centrality(interval = NaiveCI()),
estimator = SampleMean(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = .3,
sigma = 1
)
## -----------------------------------------------------------------------------
evaluate_estimator(
score = TestAgreement(),
estimator = MLEOrderingCI(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = .3,
sigma = 1
)
evaluate_estimator(
score = TestAgreement(),
estimator = LikelihoodRatioOrderingCI(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = .3,
sigma = 1
)
evaluate_estimator(
score = TestAgreement(),
estimator = ScoreTestOrderingCI(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = .3,
sigma = 1
)
evaluate_estimator(
score = TestAgreement(),
estimator = StagewiseCombinationFunctionOrderingCI(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = .3,
sigma = 1
)
## -----------------------------------------------------------------------------
evaluate_estimator(
score = TestAgreement(),
estimator = MLEOrderingPValue(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = .3,
sigma = 1
)
evaluate_estimator(
score = TestAgreement(),
estimator = LikelihoodRatioOrderingPValue(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = .3,
sigma = 1
)
evaluate_estimator(
score = TestAgreement(),
estimator = ScoreTestOrderingPValue(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = .3,
sigma = 1
)
evaluate_estimator(
score = TestAgreement(),
estimator = StagewiseCombinationFunctionOrderingPValue(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
mu = .3,
sigma = 1
)
## -----------------------------------------------------------------------------
library(future.apply)
# Change to e.g. plan(multisession) for parallel computing
plan(sequential)
# Scenario 1:
scores1 <- list(MSE(), OverestimationProbability())
estimators1 <- list(SampleMean(), BiasReduced())
dist1 <- list(Normal(two_armed = TRUE))
designs1 <- list(get_example_design(two_armed = TRUE))
mu1 <- seq(-1,1,.5)
sigma1 <- 1
# Scenario 2:
scores2 <- list(Coverage(), Width())
estimators2 <- list(NaiveCI(), StagewiseCombinationFunctionOrderingCI())
dist2 <- list(Normal(two_armed = TRUE))
designs2 <- list(get_example_design(two_armed = TRUE))
mu2 <- seq(-1,1,.5)
sigma2 <- 1
# Evaluate in parallel
res <- evaluate_scenarios_parallel(
score_lists = list(scores1, scores2),
estimator_lists = list(estimators1, estimators2),
data_distribution_lists = list(dist1, dist2),
design_lists = list(designs1, designs2),
mu_lists = list(mu1, mu2),
sigma_lists = list(sigma1, sigma2)
)
res[[1]]
res[[2]]
## -----------------------------------------------------------------------------
set.seed(321)
dat <- data.frame(
endpoint = c(rnorm(56, .3, 1), rnorm(56, 0, 1)),
group = factor(rep(c("trt", "ctl"),
c(56,56)), levels = c("trt", "ctl")),
stage = rep(1, 112)
)
head(dat)
## -----------------------------------------------------------------------------
analyze(data = dat,
statistics = list(),
data_distribution = Normal(two_armed = TRUE),
design = get_example_design(two_armed = TRUE),
sigma = 1)
## -----------------------------------------------------------------------------
dat <- rbind(dat,
data.frame(
endpoint = c(rnorm(47, .3, 1), rnorm(47, 0, 1)),
group = factor(rep(c("trt", "ctl"),
c(47, 47)), levels = c("trt", "ctl")),
stage = rep(2, 94)
))
## -----------------------------------------------------------------------------
analyze(
data = dat,
statistics = c(
SampleMean(),
BiasReduced(),
PseudoRaoBlackwell(),
MedianUnbiasedStagewiseCombinationFunctionOrdering(),
StagewiseCombinationFunctionOrderingCI(),
StagewiseCombinationFunctionOrderingPValue()
),
data_distribution = Normal(two_armed = TRUE),
sigma = 1,
design = get_example_design(two_armed = TRUE)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.