Nothing
# Name: ADRS
#
# Label: Response Analysis Dataset
#
# Input: adsl, rs, tu
library(admiral)
library(admiralonco)
library(pharmaversesdtm) # Contains example datasets from the CDISC pilot project
# pharmaverseadam contains example datasets generated from the CDISC pilot
# project SDTM ran through admiral templates
library(pharmaverseadam)
library(dplyr)
library(lubridate)
library(stringr)
# Load source datasets ----
# Use e.g. haven::read_sas to read in .sas7bdat, or other suitable functions
# as needed and assign to the variables below.
# For illustration purposes read in pharmaverse test data
data("adsl")
data("rs_onco_recist")
data("tu_onco_recist")
rs <- rs_onco_recist
tu <- tu_onco_recist
rs <- convert_blanks_to_na(rs)
tu <- convert_blanks_to_na(tu)
# Derivations ----
# Get list of ADSL vars required for derivations - here we assume randomized study
adsl_vars <- exprs(RANDDT)
# Join ADSL vars to RS
adrs <- rs %>%
derive_vars_merged(
dataset_add = adsl,
new_vars = adsl_vars,
by_vars = get_admiral_option("subject_keys")
)
# Company-specific pre-processing ----
# Filtering to select Overall Response records - here we used Investigator records
# but all these steps could equally be repeated for Independent Review Facility
adrs <- adrs %>%
filter(RSEVAL == "INVESTIGATOR" & RSTESTCD == "OVRLRESP") %>%
mutate(
PARAMCD = "OVR",
PARAM = "Overall Response by Investigator",
PARCAT1 = "Tumor Response",
PARCAT2 = "Investigator",
PARCAT3 = "RECIST 1.1"
)
# Date imputations - here we impute missing day to last possible date
adrs <- adrs %>%
derive_vars_dt(
dtc = RSDTC,
new_vars_prefix = "A",
highest_imputation = "D",
date_imputation = "last"
) %>%
mutate(AVISIT = VISIT)
# Set numeric analysis value - here RECIST 1.1 response values are expected
adrs <- adrs %>%
mutate(
AVALC = RSSTRESC,
AVAL = aval_resp(AVALC)
)
# Set analysis flag to include only the records that should contribute to the
# parameter derivations - here only valid assessments and those occurring on or
# after randomization date, if there is more than one assessment per date the
# worst one is flagged
worst_resp <- function(arg) {
case_when(
arg == "NE" ~ 1,
arg == "CR" ~ 2,
arg == "PR" ~ 3,
arg == "SD" ~ 4,
arg == "NON-CR/NON-PD" ~ 5,
arg == "PD" ~ 6,
TRUE ~ 0
)
}
adrs <- adrs %>%
restrict_derivation(
derivation = derive_var_extreme_flag,
args = params(
by_vars = c(get_admiral_option("subject_keys"), exprs(ADT)),
order = exprs(worst_resp(AVALC), RSSEQ),
new_var = ANL01FL,
mode = "last"
),
filter = !is.na(AVAL) & ADT >= RANDDT
) %>%
derive_var_relative_flag(
by_vars = get_admiral_option("subject_keys"),
order = exprs(ADT, RSSEQ),
new_var = ANL02FL,
condition = AVALC == "PD",
mode = "first",
selection = "before",
inclusive = TRUE
)
# Create dataset with overall responses to be used for deriving parameters
ovr <- filter(adrs, PARAMCD == "OVR" & ANL01FL == "Y" & ANL02FL == "Y")
# Parameter derivations ----
## Define events ----
# These events are just examples showing how to define the ADSL variables to keep.
# More may need to be added depending on the study needs, e.g., for adjusting
# confirmation period.
no_data_n <- event(
description = "Define no response for all patients in adsl (should be used as last event)",
dataset_name = "adsl",
condition = TRUE,
set_values_to = exprs(AVALC = "N"),
keep_source_vars = adsl_vars
)
no_data_missing <- event(
description = paste(
"Define missing response (MISSING) for all patients in adsl (should be used",
"as last event)"
),
dataset_name = "adsl",
condition = TRUE,
set_values_to = exprs(AVALC = "MISSING"),
keep_source_vars = adsl_vars
)
## Progressive disease ----
adrs <- adrs %>%
derive_extreme_records(
dataset_ref = adsl,
dataset_add = adrs,
by_vars = get_admiral_option("subject_keys"),
filter_add = PARAMCD == "OVR" & AVALC == "PD" & ANL01FL == "Y",
order = exprs(ADT, RSSEQ),
mode = "first",
exist_flag = AVALC,
false_value = "N",
set_values_to = exprs(
PARAMCD = "PD",
PARAM = "Disease Progression by Investigator",
PARCAT1 = "Tumor Response",
PARCAT2 = "Investigator",
PARCAT3 = "RECIST 1.1",
AVAL = yn_to_numeric(AVALC),
ANL01FL = "Y"
)
)
## Response ----
adrs <- adrs %>%
derive_extreme_event(
by_vars = get_admiral_option("subject_keys"),
order = exprs(event_nr, ADT),
tmp_event_nr_var = event_nr,
mode = "first",
events = list(rsp_y, no_data_n),
source_datasets = list(
ovr = ovr,
adsl = adsl
),
set_values_to = exprs(
PARAMCD = "RSP",
PARAM = "Response by Investigator (confirmation not required)",
PARCAT1 = "Tumor Response",
PARCAT2 = "Investigator",
PARCAT3 = "RECIST 1.1",
AVAL = yn_to_numeric(AVALC),
ANL01FL = "Y"
)
)
## Clinical benefit ----
adrs <- adrs %>%
derive_extreme_event(
by_vars = get_admiral_option("subject_keys"),
order = exprs(desc(AVALC), ADT, event_nr),
tmp_event_nr_var = event_nr,
mode = "first",
events = list(rsp_y, cb_y, no_data_n),
source_datasets = list(
ovr = ovr,
adsl = adsl
),
set_values_to = exprs(
PARAMCD = "CB",
PARAM = "Clinical Benefit by Investigator (confirmation for response not required)",
PARCAT1 = "Tumor Response",
PARCAT2 = "Investigator",
PARCAT3 = "RECIST 1.1",
AVAL = yn_to_numeric(AVALC),
ANL01FL = "Y"
),
check_type = "none"
)
## Best overall response (without confirmation) ----
# Please note that the order of the events specified for `events` is important.
# For example, a subject with `PR`, `PR`, `CR` qualifies for both `bor_cr` and
# `bor_pr`. As `bor_cr` is listed before `bor_pr`, CR is selected as best overall
# response for this subject.
adrs <- adrs %>%
derive_extreme_event(
by_vars = get_admiral_option("subject_keys"),
order = exprs(event_nr, ADT),
tmp_event_nr_var = event_nr,
mode = "first",
source_datasets = list(
ovr = ovr,
adsl = adsl
),
events = list(bor_cr, bor_pr, bor_sd, bor_non_crpd, bor_pd, bor_ne, no_data_missing),
set_values_to = exprs(
PARAMCD = "BOR",
PARAM = "Best Overall Response by Investigator (confirmation not required)",
PARCAT1 = "Tumor Response",
PARCAT2 = "Investigator",
PARCAT3 = "RECIST 1.1",
AVAL = aval_resp(AVALC),
ANL01FL = "Y"
)
)
## Best overall response of CR/PR ----
adrs <- adrs %>%
derive_extreme_records(
dataset_ref = adsl,
dataset_add = adrs,
by_vars = get_admiral_option("subject_keys"),
filter_add = PARAMCD == "BOR" & AVALC %in% c("CR", "PR"),
exist_flag = AVALC,
false_value = "N",
set_values_to = exprs(
PARAMCD = "BCP",
PARAM = "Best Overall Response of CR/PR by Investigator (confirmation not required)",
PARCAT1 = "Tumor Response",
PARCAT2 = "Investigator",
PARCAT3 = "RECIST 1.1",
AVAL = yn_to_numeric(AVALC),
ANL01FL = "Y"
)
)
## Confirmed response versions of the above parameters ----
adrs <- adrs %>%
derive_extreme_event(
by_vars = get_admiral_option("subject_keys"),
order = exprs(desc(AVALC), ADT, event_nr),
tmp_event_nr_var = event_nr,
mode = "first",
source_datasets = list(
ovr = ovr,
adsl = adsl
),
events = list(crsp_y_cr, crsp_y_pr, no_data_n),
set_values_to = exprs(
PARAMCD = "CRSP",
PARAM = "Confirmed Response by Investigator",
PARCAT1 = "Tumor Response",
PARCAT2 = "Investigator",
PARCAT3 = "RECIST 1.1",
AVAL = yn_to_numeric(AVALC),
ANL01FL = "Y"
)
)
adrs <- adrs %>%
derive_extreme_event(
by_vars = get_admiral_option("subject_keys"),
order = exprs(desc(AVALC), ADT, event_nr),
tmp_event_nr_var = event_nr,
mode = "first",
events = list(crsp_y_cr, crsp_y_pr, cb_y, no_data_n),
source_datasets = list(
ovr = ovr,
adsl = adsl
),
set_values_to = exprs(
PARAMCD = "CCB",
PARAM = "Confirmed Clinical Benefit by Investigator",
PARCAT1 = "Tumor Response",
PARCAT2 = "Investigator",
PARCAT3 = "RECIST 1.1",
AVAL = yn_to_numeric(AVALC),
ANL01FL = "Y"
)
)
adrs <- adrs %>%
derive_extreme_event(
by_vars = get_admiral_option("subject_keys"),
order = exprs(event_nr, ADT),
tmp_event_nr_var = event_nr,
mode = "first",
events = list(cbor_cr, cbor_pr, bor_sd, bor_non_crpd, bor_pd, bor_ne, no_data_missing),
source_datasets = list(
ovr = ovr,
adsl = adsl
),
set_values_to = exprs(
PARAMCD = "CBOR",
PARAM = "Best Confirmed Overall Response by Investigator",
PARCAT1 = "Tumor Response",
PARCAT2 = "Investigator",
PARCAT3 = "RECIST 1.1",
AVAL = aval_resp(AVALC),
ANL01FL = "Y"
)
) %>%
derive_extreme_records(
dataset_ref = adsl,
dataset_add = adrs,
by_vars = get_admiral_option("subject_keys"),
filter_add = PARAMCD == "CBOR" & AVALC %in% c("CR", "PR"),
exist_flag = AVALC,
false_value = "N",
set_values_to = exprs(
PARAMCD = "CBCP",
PARAM = "Best Confirmed Overall Response of CR/PR by Investigator",
PARCAT1 = "Tumor Response",
PARCAT2 = "Investigator",
PARCAT3 = "RECIST 1.1",
AVAL = yn_to_numeric(AVALC),
ANL01FL = "Y"
)
)
## Death ----
adsldth <- adsl %>%
select(!!!get_admiral_option("subject_keys"), DTHDT, !!!adsl_vars)
adrs <- adrs %>%
derive_extreme_records(
dataset_ref = adsldth,
dataset_add = adsldth,
by_vars = get_admiral_option("subject_keys"),
filter_add = !is.na(DTHDT),
exist_flag = AVALC,
false_value = "N",
set_values_to = exprs(
PARAMCD = "DEATH",
PARAM = "Death",
PARCAT1 = "Reference Event",
ANL01FL = "Y",
AVAL = yn_to_numeric(AVALC),
ADT = DTHDT
)
) %>%
select(-DTHDT)
## Last disease assessment ----
adrs <- adrs %>%
derive_extreme_records(
dataset_ref = adsl,
dataset_add = adrs,
by_vars = get_admiral_option("subject_keys"),
filter_add = PARAMCD == "OVR" & ANL01FL == "Y",
order = exprs(ADT, RSSEQ),
mode = "last",
set_values_to = exprs(
PARAMCD = "LSTA",
PARAM = "Last Disease Assessment by Investigator",
PARCAT1 = "Tumor Response",
PARCAT2 = "Investigator",
PARCAT3 = "RECIST 1.1",
ANL01FL = "Y"
)
)
## Measurable disease at baseline ----
adslmdis <- adsl %>%
select(!!!get_admiral_option("subject_keys"), !!!adsl_vars)
adrs <- adrs %>%
derive_param_exist_flag(
dataset_ref = adslmdis,
dataset_add = tu,
condition = TUEVAL == "INVESTIGATOR" & TUSTRESC == "TARGET" & VISIT == "SCREENING",
false_value = "N",
missing_value = "N",
set_values_to = exprs(
PARAMCD = "MDIS",
PARAM = "Measurable Disease at Baseline by Investigator",
PARCAT2 = "Investigator",
PARCAT3 = "RECIST 1.1",
AVAL = yn_to_numeric(AVALC),
ANL01FL = "Y"
)
)
# Derive analysis sequence
adrs <- adrs %>%
derive_var_obs_number(
by_vars = get_admiral_option("subject_keys"),
order = exprs(PARAMCD, ADT, VISITNUM, RSSEQ),
check_type = "error"
)
# Join any required ADSL variables
adrs <- adrs %>%
derive_vars_merged(
dataset_add = select(adsl, !!!negate_vars(adsl_vars)),
by_vars = get_admiral_option("subject_keys")
)
# Save output ----
# Change to whichever directory you want to save the dataset in
dir <- tools::R_user_dir("admiralonco_templates_data", which = "cache")
if (!file.exists(dir)) {
# Create the folder
dir.create(dir, recursive = TRUE, showWarnings = FALSE)
}
save(adrs, file = file.path(dir, "adrs.rda"), compress = "bzip2")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.