Nothing
#' @title Langmuir Isotherm Linear (Form 1) Analysis
#' @name fit_langmuirLM1
#'
#' @description Performs linear modeling for the Langmuir adsorption isotherm using the linearized form Ce/Qe = (1/Qmax·b) + (Ce/Qmax).
#'
#' @param Ce numeric vector for equilibrium concentration
#' @param Qe numeric vector for adsorbed amount
#' @param verbose logical; if TRUE (default), prints summary and messages
#'
#' @import Metrics
#' @import stats
#' @import ggplot2
#' @import boot
#'
#' @importFrom Metrics rmse mae mse rae
#' @importFrom stats lm AIC BIC resid fitted
#' @importFrom ggplot2 ggplot aes geom_point geom_line geom_ribbon annotate labs theme_minimal theme
#' @importFrom boot boot
#'
#' @return A list containing the results of the linear Langmuir (Form 1) model fitting, including:
#' \itemize{
#' \item \strong{Parameter estimates} for the Langmuir model (Qmax and Kl).
#' \item \strong{Fit statistics} such as Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and R-squared.
#' \item \strong{Error metrics} including Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), Relative Absolute Error (RAE), and standard error of estimates.
#' \item A \strong{model fit plot} with bootstrapped 95% confidence intervals.
#' \item A \strong{residual plot} for diagnostic assessment of model performance.}
#'
#' @examples
#' Ce <- c(0.01353, 0.04648, 0.13239, 0.27714, 0.41600, 0.63607, 0.80435, 1.10327, 1.58223)
#' Qe <- c(0.03409, 0.06025, 0.10622, 0.12842, 0.15299, 0.15379, 0.15735, 0.15735, 0.16607)
#' fit_langmuirLM1(Ce, Qe, verbose = TRUE)
#' fit_langmuirLM1(Ce, Qe)
#'
#' @author Paul Angelo C. Manlapaz
#' @references Langmuir, I. (1918) <doi:10.1021/ja01269a066> The adsorption of gases on plane surfaces of glass, mics and platinum. Journal of the American Chemical Society, 1361-1403.
#' @export
utils::globalVariables(c("Ce", "Ce_Qe", "Fit", "CI_lower", "CI_upper", "Fitted", "Residuals"))
fit_langmuirLM1 <- function(Ce, Qe, verbose = TRUE) {
# Prepare linearized data
Ce_Qe <- Ce / Qe
data <- data.frame(Ce = Ce, Ce_Qe = Ce_Qe)
# Fit linear model: Ce/Qe = (1/Qmax*b) + (Ce/Qmax)
fit <- stats::lm(Ce_Qe ~ Ce, data = data)
summary_fit <- summary(fit)
coef_fit <- coef(fit)
intercept <- coef_fit[1]
slope <- coef_fit[2]
# Langmuir parameters
Qmax <- 1 / slope
b <- slope / intercept
# Fitted values and residuals
fitted_vals <- stats::fitted(fit)
residuals <- stats::resid(fit)
# R-squared and adjusted R-squared
r_squared <- summary_fit$r.squared
adj_r_squared <- summary_fit$adj.r.squared
# AIC/BIC
aic_val <- stats::AIC(fit)
bic_val <- stats::BIC(fit)
# Error metrics
ss_res <- sum(residuals^2)
n_obs <- length(Qe)
p <- length(coef(fit))
std_error <- sqrt(ss_res / (n_obs - p))
error_metrics <- list(
RMSE = Metrics::rmse(Ce_Qe, fitted_vals),
MAE = Metrics::mae(Ce_Qe, fitted_vals),
MSE = Metrics::mse(Ce_Qe, fitted_vals),
RAE = Metrics::rae(Ce_Qe, fitted_vals),
StdError = std_error
)
# Equation annotation
equation_label <- paste0("frac(C[e], Q[e]) == ", formatC(intercept, digits = 3, format = "f"), ifelse(slope >= 0, " + ", " - "), formatC(abs(slope), digits = 3, format = "f"), " * C[e]")
# Bootstrap for confidence intervals
boot_fun <- function(data, indices) {
d <- data[indices, ]
tryCatch({
fit_boot <- stats::lm(Ce_Qe ~ Ce, data = d)
predict(fit_boot, newdata = data.frame(Ce = sort(data$Ce)))
}, error = function(e) rep(NA, nrow(data)))
}
boot_res <- boot::boot(data = data, statistic = boot_fun, R = 100)
boot_preds <- boot_res$t[complete.cases(boot_res$t), ]
ci_bounds <- apply(boot_preds, 2, function(x) quantile(x, probs = c(0.025, 0.975)))
plot_data <- data.frame(
Ce = sort(data$Ce),
Fit = predict(fit, newdata = data.frame(Ce = sort(data$Ce))),
CI_lower = ci_bounds[1, ],
CI_upper = ci_bounds[2, ]
)
# Plot: Linear Fit with bootstrapped CI
model_fit_plot <- ggplot2::ggplot(data, ggplot2::aes(x = Ce, y = Ce_Qe)) +
ggplot2::geom_point(color = "blue", size = 2) +
ggplot2::geom_line(data = plot_data, ggplot2::aes(x = Ce, y = Fit), color = "red", linewidth = 1.2) +
ggplot2::geom_ribbon(data = plot_data, ggplot2::aes(ymin = CI_lower, ymax = CI_upper),
fill = "red", alpha = 0.2) +
ggplot2::annotate("text", x = max(Ce) * 0.95, y = min(Ce_Qe) * 1.05,
label = equation_label, parse = TRUE, size = 5, hjust = 1) +
ggplot2::labs(title = "Langmuir Isotherm First Linear Model Fit (Ce/Qe vs. Ce)",
x = "Ce", y = "Ce/Qe") +
ggplot2::theme_minimal() +
ggplot2::theme(
plot.title = ggplot2::element_text(hjust = 0.5, face = "bold"),
panel.grid = ggplot2::element_blank(),
panel.background = ggplot2::element_blank(),
plot.background = ggplot2::element_blank()
)
# Plot: Residuals
residual_plot <- ggplot2::ggplot(data.frame(Fitted = fitted_vals, Residuals = residuals),
ggplot2::aes(x = Fitted, y = Residuals)) +
ggplot2::geom_point(color = "darkgreen", size = 4) +
ggplot2::geom_hline(yintercept = 0, linetype = "dashed", color = "black") +
ggplot2::geom_ribbon(ggplot2::aes(ymin = -1.96 * sd(residuals), ymax = 1.96 * sd(residuals)),
fill = "gray", alpha = 0.2) +
ggplot2::annotate("text", x = max(fitted_vals) * 0.9, y = max(residuals) * 0.9,
label = paste("R2 =", round(r_squared, 3), "\n",
"Adj. R2 =", round(adj_r_squared, 3)),
hjust = 1, size = 4, color = "black") +
ggplot2::labs(title = "Residual Plot for Langmuir Isotherm First Linear Form",
x = "Fitted Values", y = "Residuals") +
ggplot2::theme(
plot.title = ggplot2::element_text(hjust = 0.5, face = "bold"),
panel.grid = ggplot2::element_blank(),
panel.background = ggplot2::element_blank(),
plot.background = ggplot2::element_blank()
)
if (verbose) {
cat("=== Langmuir Isotherm First Linear Model Summary ===\n")
print(summary_fit)
cat("\nLangmuir Model Parameters:\n")
cat("Qmax:", round(Qmax, 8), "\n")
cat("b :", round(b, 8), "\n")
cat("\nModel Fit Statistics:\n")
cat("R-squared:", r_squared, "\n")
cat("Adjusted R-squared:", adj_r_squared, "\n")
cat("AIC:", aic_val, "\n")
cat("BIC:", bic_val, "\n")
cat("\nError Metrics:\n")
cat("RMSE:", round(error_metrics$RMSE, 8), "\n")
cat("MAE:", round(error_metrics$MAE, 8), "\n")
cat("MSE:", round(error_metrics$MSE, 8), "\n")
cat("RAE:", round(error_metrics$RAE, 8), "\n")
cat("Standard Error of Estimate:", round(error_metrics$StdError, 8), "\n")
print(model_fit_plot)
print(residual_plot)
}
# Return structured results
invisible(list(
model = fit,
summary = summary_fit,
parameters = list(Qmax = Qmax, b = b),
r_squared = r_squared,
adjusted_r_squared = adj_r_squared,
AIC = aic_val,
BIC = bic_val,
error_metrics = error_metrics,
plots = list(model_fit = model_fit_plot, residuals = residual_plot)
))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.