kruskal | R Documentation |
It makes the multiple comparison with Kruskal-Wallis. The alpha parameter by default is 0.05. Post hoc test is using the criterium Fisher's least significant difference. The adjustment methods include the Bonferroni correction and others.
kruskal(y, trt, alpha = 0.05, p.adj=c("none","holm","hommel",
"hochberg", "bonferroni", "BH", "BY", "fdr"), group=TRUE, main = NULL,console=FALSE)
y |
response |
trt |
treatment |
alpha |
level signification |
p.adj |
Method for adjusting p values (see p.adjust) |
group |
TRUE or FALSE |
main |
Title |
console |
logical, print output |
For equal or different repetition.
For the adjustment methods, see the function p.adjusted.
p-adj = "none" is t-student.
statistics |
Statistics of the model |
parameters |
Design parameters |
means |
Statistical summary of the study variable |
comparison |
Comparison between treatments |
groups |
Formation of treatment groups |
Felipe de Mendiburu
Practical Nonparametrics Statistics. W.J. Conover, 1999
BIB.test
, DAU.test
, duncan.test
,
durbin.test
, friedman
, HSD.test
,
LSD.test
, Median.test
, PBIB.test
,
REGW.test
, scheffe.test
, SNK.test
,
waerden.test
, waller.test
, plot.group
library(agricolae)
data(corn)
str(corn)
comparison<-with(corn,kruskal(observation,method,group=TRUE, main="corn"))
comparison<-with(corn,kruskal(observation,method,p.adj="bon",group=FALSE, main="corn"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.