| kruskal | R Documentation | 
It makes the multiple comparison with Kruskal-Wallis. The alpha parameter by default is 0.05. Post hoc test is using the criterium Fisher's least significant difference. The adjustment methods include the Bonferroni correction and others.
kruskal(y, trt, alpha = 0.05, p.adj=c("none","holm","hommel", 
"hochberg", "bonferroni", "BH", "BY", "fdr"), group=TRUE, main = NULL,console=FALSE)
| y | response | 
| trt | treatment | 
| alpha | level signification | 
| p.adj | Method for adjusting p values (see p.adjust) | 
| group | TRUE or FALSE | 
| main | Title | 
| console | logical, print output | 
For equal or different repetition.
For the adjustment methods, see the function p.adjusted.
p-adj = "none" is t-student.
| statistics | Statistics of the model | 
| parameters | Design parameters | 
| means | Statistical summary of the study variable | 
| comparison | Comparison between treatments | 
| groups | Formation of treatment groups | 
Felipe de Mendiburu
Practical Nonparametrics Statistics. W.J. Conover, 1999
BIB.test, DAU.test, duncan.test,
durbin.test, friedman, HSD.test,
LSD.test, Median.test, PBIB.test, 
REGW.test, scheffe.test, SNK.test,
waerden.test, waller.test, plot.group
library(agricolae)
data(corn)
str(corn)
comparison<-with(corn,kruskal(observation,method,group=TRUE, main="corn"))
comparison<-with(corn,kruskal(observation,method,p.adj="bon",group=FALSE, main="corn"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.