Nothing
test_that("Loop the Loop", {
# We want to run amCluster many times with many combinations of parameters
# and we want to compare the results with previous runs. Like this:
snapshot_amCluster <- function(ds, ...) {
# Log the call to the snapshot file:
argstr = helpArgToString(...)
cmdstr = paste("amCluster(", ds, ", ", argstr, ")", sep="") ; expect_snapshot(cat(cmdstr))
# Capture any errors reported by allelematch:
pw <- tryCatch(
# Make the call to allelematch:
amCluster(amDatasetFocal=get(ds), ...),
## If the call fails, return the error message and
## the method and arguments that threw the error:
error = function(e) {
ret = c(paste("\n Error : ", e$message, "\n Rejected : ", cmdstr, "\n"))
# Differ between expected and unexpected errors:
if (!grepl("no clusters formed. Please set cutHeight lower and run again", e$message)) {
# Some unexpected error happened. Print it to the screen for easier debugging.
message("\n ", ret, sep="")
}
ret # Return this message from 'tryCatch'
}
)
# Log the result to the snapshot file:
# expect_snapshot(summary.amCluster(pw)) # Too big. :-(
expect_snapshot_value(pw, style = "json2")
return(pw)
}
# Run different data sets with different qualities through the same loops:
miniExample = data.frame(
"LOC1a" = c(11:14),
"LOC1b" = c(21:24),
"LOC2a" = c(31:33, -99),
"LOC2b" = c(41:44)
)
data("amExample1")
data("amExample2") ; amExample2 = amExample2[c(1:20),] # Just keep the first 20 rows to save speed and disk
data("amExample3") ; amExample3 = amExample3[c(1:20),] # Just keep the first 20 rows to save speed and disk
data("amExample4") ; amExample4 = amExample4[c(1:20),] # Just keep the first 20 rows to save speed and disk
data("amExample5") ; amExample5 = amExample5[c(1:20),] # Just keep the first 20 rows to save speed and disk
amdataMini = amDataset(miniExample)
amdataExample1 = amDataset(amExample1, indexColumn="sampleId", metaDataColumn="knownIndividual")
amdataExample2 = amDataset(amExample2, indexColumn="sampleId", metaDataColumn="knownIndividual")
amdataExample3 = amDataset(amExample3, indexColumn="sampleId", metaDataColumn="knownIndividual")
amdataExample4 = amDataset(amExample4, indexColumn="sampleId", metaDataColumn="knownIndividual")
amdataExample5 = amDataset(amExample5, indexColumn="sampleId", ignoreColumn=c("samplingData", "gender"))
# Parameters to loop over:
# " amCluster <- function(amDatasetFocal, runUntilSingletons=TRUE, cutHeight=0.3, missingMethod=2, consensusMethod=1, clusterMethod = "complete") {
# Regarding clusterMethod: "Only 'complete' acceptable. This option remains for experimental reasons". So, we stick with the default.
# Here comes the loops:
for (amds in c("amdataMini", "amdataExample1", "amdataExample2", "amdataExample3", "amdataExample4", "amdataExample5")) {
for (rus in c(TRUE, FALSE)) { # runUntilSingletons
for (ch in c(0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99)) { # cutHeight. Relevant Values? Range [0..1[ ? NULL?
for (mis in c(1, 2)) { # missingMethod
for (cons in c(1,2,3,4)) { # consensusMethod
snapshot_amCluster(amds, runUntilSingletons=rus, cutHeight=ch, missingMethod=mis, consensusMethod=cons)
}
}
}
}
}
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.