Nothing
#' Fast anticlustering
#'
#' Increasing the speed of (k-means / k-plus) anticlustering by (1)
#' conducting fewer exchanges during the optimization and (2) using an alternative
#' formulation of the k-means objective. Makes anticlustering applicable to
#' quite large data sets.
#'
#' @param x A numeric vector, matrix or data.frame of data points.
#' Rows correspond to elements and columns correspond to
#' features. A vector represents a single numeric feature.
#' @param K How many anticlusters should be created. Alternatively:
#' (a) A vector describing the size of each group, or (b) a vector
#' of length \code{nrow(x)} describing how elements are assigned
#' to anticlusters before the optimization starts.
#' @param k_neighbours The number of nearest neighbours that serve as
#' exchange partner for each element. See details.
#' @param categories A vector, data.frame or matrix representing one
#' or several categorical constraints.
#' @param exchange_partners Optional argument. A list of length
#' \code{NROW(x)} specifying for each element the indices of the
#' elements that serve as exchange partners. If used, this
#' argument overrides the \code{k_neighbours} argument. See
#' examples.
#'
#' @importFrom RANN nn2
#'
#' @seealso
#'
#' \code{\link{anticlustering}}
#'
#' \code{\link{kplus_moment_variables}}
#'
#' \code{\link{categories_to_binary}}
#'
#' \code{\link{variance_objective}}
#'
#' \code{\link{generate_exchange_partners}}
#'
#' @export
#'
#' @author
#' Martin Papenberg \email{martin.papenberg@@hhu.de}
#'
#'
#' @references
#'
#'
#' Papenberg, M., & Klau, G. W. (2021). Using anticlustering to partition
#' data sets into equivalent parts. Psychological Methods, 26(2),
#' 161–174. https://doi.org/10.1037/met0000301.
#'
#' Papenberg, M. (2024). K-plus Anticlustering: An Improved k-means Criterion for
#' Maximizing Between-Group Similarity. British Journal of Mathematical and
#' Statistical Psychology, 77(1), 80--102. https://doi.org/10.1111/bmsp.12315
#'
#' Späth, H. (1986). Anticlustering: Maximizing the variance criterion.
#' Control and Cybernetics, 15, 213-218.
#'
#'
#' @details
#'
#' This function was created to make anticlustering applicable to
#' large data sets (e.g., several 100,000 elements). It optimizes the
#' k-means objective because computing all pairwise distances as is
#' done when optimizing the "diversity" (i.e., the default in
#' \code{\link{anticlustering}}) is not feasible for very large data
#' sets (for about N > 20000 on my personal computer). Using
#' \code{fast_anticlustering} for k-plus anticlustering is also
#' possible by applying \code{\link{kplus_moment_variables}} on the
#' input (and possibly by using the argument \code{exchange_partners},
#' see Examples).
#'
#' The function \code{fast_anticlustering} employs a speed-optimized
#' exchange method, which is basically equivalent to \code{method =
#' "exchange"} in \code{\link{anticlustering}}, but may reduce the number
#' of exchanges that are investigated for each input element. The number of
#' exchange partners per element has to be set using the argument \code{k_neighbours}. By
#' default, it is set to \code{Inf}, meaning that all possible swaps are
#' tested. If \code{k_neighbours} is set differently (which is usually recommended when running
#' this function), the default behaviour is to generate exchange partners using a
#' nearest neighbour search (using the function \code{\link[RANN]{nn2}}
#' from the \code{RANN} package). Using more exchange partners can improve the quality of
#' the results, but also increase run time. Note that for very large
#' data sets, anticlustering generally becomes "easier" (even a random
#' split may yield satisfactory results), so using few exchange
#' partners is usually not a problem.
#'
#' It is possible to specify custom exchange partners using the
#' argument \code{exchange_partners} instead of relying on the default
#' nearest neighbour search. When using \code{exchange_partners}, it
#' is not necessary that each element has the same number of exchange
#' partners; this is why the argument \code{exchange_partners} has to
#' be a \code{list} instead of a \code{matrix} or
#' \code{data.frame}. Exchange partners can for example be generated
#' by \code{\link{generate_exchange_partners}} (see Examples), but a
#' custom list may also be used. Note that categorical constraints
#' induced via \code{categories} may not be respected during the
#' optimization if the \code{exchange_partners} argument allows
#' exchanges between members of different categories, so care must be
#' taken when combining the arguments \code{exchange_partners} and
#' \code{categories}.
#'
#' In \code{anticlustering(..., objective = "variance")}, the run time
#' of computing the k-means objective is in O(M N), where N is the
#' total number of elements and M is the number of variables. This is
#' because the variance is computed as the sum of squared distances
#' between all data points and their cluster centers. The function
#' \code{fast_anticlustering} uses a different - but equivalent -
#' formulation of the k-means objective, where the re-computation of
#' the objective only depends and M but no longer on N. In
#' particular, this variant of k-means anticlustering minimizes
#' the weighted sum of squared distances between
#' cluster centroids and the overall data centroid; the distances
#' between all individual data points and their cluster center are not
#' computed (Späth, 1986). Using the different objective formulation
#' reduces the run time by an
#' order of magnitude and makes k-means anticlustering applicable to
#' very large data sets (even in the millions). For a fixed number of
#' exchange partners (specified using the argument
#' \code{k_neighbours}), the approximate run time of
#' \code{fast_anticlustering} is in O(M N). The algorithm
#' \code{method = "exchange"} in \code{\link{anticlustering}} with
#' \code{objective = "variance"} has a run time of O(M N^3).
#' Thus, \code{fast_anticlustering} can improve the run time
#' by two orders of magnitude as compared to the standard exchange
#' algorithm. The nearest neighbour search, which is done in the
#' beginning usually does not strongly contribute to the overall
#' run time. It is nevertheless possible to suppress the nearest
#' neighbour search by using the \code{exchange_partners} argument.
#'
#' When setting the \code{categories} argument, exchange partners
#' (i.e., nearest neighbours) will be generated from the same
#' category. Note that when \code{categories} has multiple columns,
#' each combination of these categories is treated as a distinct
#' category by the exchange method. You can also use
#' \code{\link{categories_to_binary}} to potentially improve results
#' for several categorical variables, instead of using the argument
#' \code{categories}.
#'
#' @examples
#'
#' ## Use fewer or more exchange partners to adjust speed (vs. quality tradeoff)
#' features <- iris[, - 5]
#' N <- nrow(features)
#' init <- sample(rep_len(1:3, N)) # same starting point for all calls:
#' groups1 <- fast_anticlustering(features, K = init) # default: all exchanges
#' groups2 <- fast_anticlustering(features, K = init, k_neighbours = 20)
#' groups3 <- fast_anticlustering(features, K = init, k_neighbours = 2)
#'
#' variance_objective(features, groups1)
#' variance_objective(features, groups2)
#' variance_objective(features, groups3)
#'
#' # K-plus anticlustering is straight forward when sticking with the default
#' # for k_neighbours
#' kplus_anticlusters <- fast_anticlustering(
#' kplus_moment_variables(features, T = 2),
#' K = 3
#' )
#' mean_sd_tab(features, kplus_anticlusters)
#'
#' # Some care is needed when applying k-plus using with this function
#' # while using a reduced number of exchange partners generated in the
#' # nearest neighbour search. Then we:
#' # 1) Use kplus_moment_variables() on the numeric input
#' # 2) Generate custom exchange_partners because otherwise nearest
#' # neighbours are internally selected based on the extended k-plus
#' # variables returned by kplus_moment_variables()
#' # (which does not really make sense)
#' kplus_anticlusters <- fast_anticlustering(
#' kplus_moment_variables(features, T = 2),
#' K = 3,
#' exchange_partners = generate_exchange_partners(120, features = features, method = "RANN")
#' )
#' mean_sd_tab(features, kplus_anticlusters)
#' # Or we use random exchange partners:
#' kplus_anticlusters <- fast_anticlustering(
#' kplus_moment_variables(features, T = 2),
#' K = 3,
#' exchange_partners = generate_exchange_partners(120, N = nrow(features), method = "random")
#' )
#' mean_sd_tab(features, kplus_anticlusters)
#'
#'
#' # Working on several 1000 elements is very fast (Here n = 10000, m = 2)
#' data <- matrix(rnorm(10000 * 2), ncol = 2)
#' start <- Sys.time()
#' groups <- fast_anticlustering(data, K = 5, k_neighbours = 5)
#' Sys.time() - start
#'
fast_anticlustering <- function(x, K, k_neighbours = Inf, categories = NULL,
exchange_partners = NULL) {
input_validation_anticlustering(
x, K, "variance", "exchange", FALSE, categories, NULL
)
categories <- merge_into_one_variable(categories)
x <- as.matrix(x)
N <- nrow(x)
if (argument_exists(exchange_partners)) {
validate_exchange_partners(exchange_partners, N)
} else {
if (!isTRUE(k_neighbours == Inf)) {
validate_input(k_neighbours, "k_neighbours", objmode = "numeric", len = 1,
must_be_integer = TRUE, greater_than = 0, not_na = TRUE)
}
exchange_partners <- all_exchange_partners(x, k_neighbours, categories)
}
exchange_partners <- cleanup_exchange_partners(exchange_partners, N)
c_anticlustering(
x, initialize_clusters(N, K, categories),
categories = NULL, objective = "fast-kmeans",
exchange_partners - 1
)
}
#' Get exchange partners for k-means anticlustering
#'
#' @details
#'
#' Computes the k nearest neighbours for each input element using
#' RANN::nn2. If no nearest neighbours are required, argument
#' `k_neighbours` will be `Inf`. May compute nearest neighbors within
#' categories.
#'
#' @return A list of length `N`. Each element is a vector
#' of exchange partners (that may be nearest neighbors).
#'
#' @noRd
all_exchange_partners <- function(features, k_neighbours, categories) {
# Case 1: no nearest neighbor search needed
if (is.infinite(k_neighbours)) {
return(all_exchange_partners_(nrow(features), categories))
}
# Case 2: NN search needed
return(nearest_neighbours(features, k_neighbours, categories))
}
# Generate all possible exchange partners
all_exchange_partners_ <- function(N, categories) {
# Case 1: Exchange partners are from the same category
if (argument_exists(categories)) {
return(list_idx_by_category(categories))
}
# Case 2: Everyone is potential exchange partner
rep(list(1:N), N)
}
# convert list of exchange partners to matrix for C;
# when doing that, possibly "fill" empty entries with "N+1" (in C -> N), if some
# list elements are shorter than others (if categorical variables have been used and are
# unevenly distributed)
cleanup_exchange_partners <- function(exchange_partners, N) {
max_exchanges_partners <- max(lengths(exchange_partners))
exchange_partners <- lapply(exchange_partners, function(x) c(x[1:length(x)], rep(N+1, max(0, max_exchanges_partners - length(x)))))
# remove potential NAs
exchange_partners <- lapply(exchange_partners, function(x) x[!is.na(x)])
exchange_partners <- unname(t(t(as.data.frame(exchange_partners))))
# `exchange_partners` is passed as matrix to C; there it is converted to a 1-dimensional "vector".
# Here we pass it as a matrix where elements = columns; cols = exchange partners.
# Usually it would be the other way around, e.g. RANN returns the standard "N x k_neighbours"
# format, but I pass a "k_neighbours x N" matrix to C, which is more easily handled there.
exchange_partners
}
validate_exchange_partners <- function(exchange_partners, N) {
if (!inherits(exchange_partners, "list")) {
stop("Argument `exchange_partners` must be a list.")
}
if (length(exchange_partners) != N) {
stop("If used, argument `exchange_partners` must have the same length as you have data points.")
}
if (any(lengths(exchange_partners)) > N) {
stop("Argument `exchange_partners` has problems: Some elements have more exchange partners than there are data points.")
}
unlisted <- unlist(exchange_partners)
if (any(unlisted) > N) {
stop("Argument `exchange_partners` has problems: The maximum index is larger than the number of elements.")
}
if (any(unlisted) < 1) {
stop("Argument `exchange_partners` has problems: Some indices are lower than 1.")
}
if (any(as.integer(unlisted) != unlisted)) {
stop("Argument `exchange_partners` has problems: Only integer indices are allowed.")
}
}
#' Get exchange partners for fast_anticlustering()
#'
#' @param n_exchange_partners The number of exchange partners per
#' element
#' @param N The number of elements for which exchange partners; can be
#' \code{NULL} if \code{features} is passed (it is ignored if
#' \code{features} is passed).
#' @param features The features for which nearest neighbours are
#' sought if \code{method = "RANN"}. May be NULL if random
#' exchange partners are generated.
#' @param method Currently supports "random" (default), "RANN" and
#' "restricted_random". See details.
#' @param categories A vector, data.frame or matrix representing one
#' or several categorical constraints.
#'
#' @return A list of length \code{N}. Is usually used as input to the
#' argument \code{exchange_partners} in
#' \code{\link{fast_anticlustering}}. Then, the i'th element of
#' the list contains the indices of the exchange partners that are
#' used for the i'th element.
#'
#' @export
#'
#' @details
#'
#' The \code{method = "RANN"} generates exchange partners using a
#' nearest neighbour search via \code{\link[RANN]{nn2}} from the
#' \code{RANN} package; \code{methode = "restricted_random"} generates
#' random exchange partners but ensures that for each element, no
#' duplicates are generated and that the element itself does not occur
#' as exchange partner (this is the slowest method, and I would not
#' recommend it for large N); \code{method = "random"} (default) does
#' not impose these restrictions and generates unrescricted random
#' partners (it may therefore generate duplicates and the element
#' itself as exchange partner).
#'
#' When setting the \code{categories} argument and using \code{method
#' = "RANN"}, exchange partners (i.e., nearest neighbours) will be
#' generated from the same category; \code{methode =
#' "restricted_random"} will also adhere to categorical constraints
#' induced via \code{categories} (i.e. each element only receives
#' exchange partners from the same category as itself); \code{methode
#' = "random"} cannot incoorporate categorical restrictions.
#'
#'
#' @examples
#'
#' # Restricted random method generates no duplicates per element and cannot return
#' # the element itself as exchange partner
#' generate_exchange_partners(5, N = 10, method = "restricted_random")
#' # "random" simply randomizes with replacement and without restrictions
#' # (categorical restrictions are also not possible; is much faster for large data sets)
#' generate_exchange_partners(5, N = 10, method = "random")
#' # May return less than 5 exchange partners if there are not enough members
#' # of the same category:
#' generate_exchange_partners(
#' 5, N = 10,
#' method = "restricted_random",
#' categories = cbind(schaper2019$room, schaper2019$frequency)
#' )
#' # using nearest neighbour search (unlike RANN::nn2, this does not
#' # return the ID of the element itself as neighbour)
#' generate_exchange_partners(5, features = schaper2019[, 3:5], method = "RANN")[1:3]
#' # compare with RANN directly:
#' RANN::nn2(schaper2019[, 3:5], k = 6)$nn.idx[1:3, ] # note k = 6
#'
generate_exchange_partners <- function(n_exchange_partners, N = NULL, features = NULL, method = "random", categories = NULL) {
if (argument_exists(features)) {
validate_data_matrix(features)
N <- NROW(features)
}
categories <- merge_into_one_variable(categories)
validate_input(n_exchange_partners, "n_exchange_partners", objmode = "numeric", len = 1,
must_be_integer = TRUE, greater_than = 0, not_na = TRUE)
validate_input(method, "method", objmode = "character", len = 1,
not_na = TRUE, not_function = TRUE, input_set = c("RANN", "random", "restricted_random"))
if (argument_exists(features) && method == "RANN") {
return(nearest_neighbours(features, n_exchange_partners, categories))
} else if (method == "restricted_random") {
init_list <- NULL
if (argument_exists(categories)) {
init_list <- list_idx_by_category(categories)
}
return(random_exchange_partners(N, n_exchange_partners, init_list))
} else if (method == "random" && !argument_exists(categories)) {
return(completely_random_exchange_partners(N, n_exchange_partners))
}
else {
stop("Argument method must be 'RANN' or 'random' or 'restricted_random'.\n'",
"When method is 'RANN', the argument 'features' must be used.\n'",
"When method is 'random', you cannot use the argument 'categories'.")
}
}
list_idx_by_category <- function(categories) {
category_ids <- lapply(1:max(categories), function(i) which(categories == i))
category_ids[categories]
}
# Generate exchange partners via nearest neighbor search using RANN::nn2
nearest_neighbours <- function(features, k_neighbours, categories) {
if (!argument_exists(categories)) {
idx <- matrix_to_list(RANN::nn2(features, k = min(k_neighbours + 1, nrow(features)))$nn.idx)
} else {
# compute nearest neighbors within each category
nns <- list()
# track the indices when dividing by category. problem is:
# in nearest neighbour search, there is no guarantee that
# the nearest neighbour is the element itself; if it were,
# restoring original order would be easy
new_order <- list()
for (i in 1:max(categories)) {
tmp_indices <- which(categories == i)
new_order[[i]] <- tmp_indices
tmp_features <- features[tmp_indices, , drop = FALSE]
tmp_nn <- RANN::nn2(tmp_features, k = min(k_neighbours + 1, nrow(tmp_features)))$nn.idx
# get original index per category
nns[[i]] <- which(categories == i)[tmp_nn]
# restore matrix structure, gets lost
dim(nns[[i]]) <- dim(tmp_nn)
}
# per category, convert matrix to list
idx_list <- lapply(nns, matrix_to_list)
# in the end, merge all lists into 1 list
idx <- merge_lists(idx_list)
# restore original order after dividing by category
original_order <- order(unlist(new_order))
idx <- idx[original_order]
}
# return as list
remove_self(idx)
}
# Convert a matrix to list - each row becomes list element
matrix_to_list <- function(x) {
as.list(as.data.frame(t(x)))
}
# Merge a list of lists into one list
merge_lists <- function(list_of_lists) {
do.call(c, list_of_lists)
}
completely_random_exchange_partners <- function(N, n_exchange_partners) {
ret <- matrix_to_list(matrix(sample(N, size = N * n_exchange_partners, replace = TRUE), ncol = n_exchange_partners))
unname(ret)
}
# generate list of random exchange partners; will not generate itself as exchange partner
# and has no duplicates for each element
random_exchange_partners <- function(N, n_exchange_partners, init_partners = NULL) {
if (is.null(init_partners)) {
init_partners <- rep(list(1:N), N)
}
init_partners <- remove_self(init_partners)
partners <- lapply(init_partners, function(x) sample_(x)[1:n_exchange_partners])
# possibly remove NAs
lapply(partners, function(x) x[!is.na(x)])
}
# remove in a list for each element the ID of the list elements position
remove_self <- function(idx_list) {
N <- length(idx_list)
lapply(1:N, function(i) idx_list[[i]][idx_list[[i]] != i])
}
#### THIS IS AN OLD AN OBSOLETE R IMPLEMENTATION; I AM KEEPING IT FOR THE TEST FILES
#' Solve anticlustering using the fast exchange method
#'
#' @param data the data -- an N x M table of item features
#' @param clusters An initial cluster assignment
#' @param all_exchange_partners A list of exchange partners
#'
#' @return The anticluster assignment
#'
#' @noRd
#'
fast_exchange_ <- function(data, clusters, all_exchange_partners) {
N <- nrow(data)
best_total <- variance_objective_(clusters, data)
centers <- cluster_centers(data, clusters)
distances <- dist_from_centers(data, centers, squared = TRUE)
## frequencies of each cluster are required for updating cluster centers:
tab <- c(table(clusters))
for (i in 1:N) {
# cluster of current item
cluster_i <- clusters[i]
# get exchange partners for item i
exchange_partners <- all_exchange_partners[[i]]
# exchange partners are not in the same cluster:
exchange_partners <- exchange_partners[clusters[exchange_partners] != clusters[i]]
# Sometimes an exchange cannot take place
if (length(exchange_partners) == 0) {
next
}
# container to store objectives associated with each exchange of item i:
comparison_objectives <- rep(NA, length(exchange_partners))
for (j in seq_along(exchange_partners)) {
## Swap item i with all legal exchange partners and check out objective
# (a) Determine clusters of to-be-swapped elements
tmp_clusters <- clusters
tmp_swap <- exchange_partners[j]
cluster_j <- tmp_clusters[tmp_swap]
# (b) Swap the elements
tmp_clusters[i] <- cluster_j
tmp_clusters[tmp_swap] <- cluster_i
# (c) Update cluster centers after swap
tmp_centers <- update_centers(centers, data, i, tmp_swap, cluster_i, cluster_j, tab)
# (d) Update distances from centers after swap
tmp_distances <- update_distances(data, tmp_centers, distances, cluster_i, cluster_j)
# (e) Compute objective after swap
comparison_objectives[j] <- sum(tmp_distances[cbind(1:nrow(tmp_distances), tmp_clusters)])
}
## If an improvement of the objective occured, do the swap
best_this_round <- max(comparison_objectives)
if (best_this_round > best_total) {
# which element has to be swapped
swap <- exchange_partners[comparison_objectives == best_this_round][1]
# Update cluster centers
centers <- update_centers(centers, data, i, swap, clusters[i], clusters[swap], tab)
# Update distances
distances <- update_distances(data, centers, distances, cluster_i, clusters[swap])
# Actually swap the elements - i.e., update clusters
clusters[i] <- clusters[swap]
clusters[swap] <- cluster_i
# Update best solution
best_total <- best_this_round
}
}
clusters
}
#' Recompute distances from cluster centers after swapping two elements
#' @param distances distances from cluster centers per element (old)
#' @param cluster_i the cluster of element i
#' @param cluster_j the cluster of element j
#' @return The new distances
#' @noRd
update_distances <- function(features, centers, distances, cluster_i, cluster_j) {
for (k in c(cluster_i, cluster_j)) {
distances[, k] <- colSums((t(features) - centers[k,])^2)
}
distances
}
#' Update a cluster center after swapping two elements
#'
#' @param centers The current cluster centers
#' @param features The features
#' @param i the index of the first element to be swapped
#' @param j the index of the second element to be swapped
#' @param cluster_i the cluster of element i
#' @param cluster_j the cluster of element j
#' @param tab A table of the cluster frequencies
#'
#' @details
#'
#' This should make the fast exchange method much faster, because
#' most time is spent on finding the cluster centers. After swapping
#' only two elements, it should be possible to update the two centers
#' very fast
#' @noRd
update_centers <- function(centers, features, i, j, cluster_i, cluster_j, tab) {
## First cluster: item i is removed, item j is added
centers[cluster_i, ] <- centers[cluster_i, ] - (features[i, ] / tab[cluster_i]) + (features[j, ] / tab[cluster_i])
## Other cluster: item j is removed, item i is added
centers[cluster_j, ] <- centers[cluster_j, ] + (features[i, ] / tab[cluster_j]) - (features[j, ] / tab[cluster_j])
centers
}
############ END OLD OBSOLETE IMPLEMENTATION
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.