Description Usage Format Source Examples
chdage dataset.
1 |
A data.frame with 100 rows and 4 variables:
Identification code (1 - 100)
Age (Years)
Age group (1: 20-39, 2: 30-34, 3: 35-39, 4: 40-44, 5: 45-49, 6: 50-54, 7: 55-59, 8: 60-69)
Presence of CHD (1: No, 2: Yes)
Hosmer, D.W., Lemeshow, S. and Sturdivant, R.X. (2013) Applied Logistic Regression, 3rd ed., New York: Wiley
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | head(chdage, n = 10)
summary(chdage)
## Figure 1.1 p. 5
plot(as.integer(chd)-1 ~ age,
pch = 20,
main = "Figure 1.1 p. 5",
ylab = "Coronary heart disease",
xlab = "Age (years)",
data = chdage)
## Table 1.2
with(chdage, addmargins(table(agegrp)))
with(chdage, addmargins(table(agegrp, chd)))
(Means <- with(chdage, tapply(as.integer(chd)-1, list(agegrp), mean)))
## Figure 1.2 p. 6
midPoints <- c(24.5, seq(32, 57, 5), 64.5)
plot(midPoints, Means, pch = 20,
ylab = "Coronary heart disease (mean)",
xlab = "Age (years)", ylim = 0:1,
main = "Figure 1.2 p. 6")
lines(midPoints, Means)
## Table 1.3
summary( mod1.3 <- glm( chd ~ age, family = binomial, data = chdage ))
## Table 1.4
vcov(mod1.3)
## Computing OddsRatio and confidence intervals for age ...
exp(coef(mod1.3))[-1]
exp(confint(mod1.3))[-1, ]
|
id age agegrp chd
1 1 20 20-39 No
2 2 23 20-39 No
3 3 24 20-39 No
4 4 25 20-39 No
5 5 25 20-39 Yes
6 6 26 20-39 No
7 7 26 20-39 No
8 8 28 20-39 No
9 9 28 20-39 No
10 10 29 20-39 No
id age agegrp chd
Min. : 1.00 Min. :20.00 55-59 :17 No :57
1st Qu.: 25.75 1st Qu.:34.75 30-34 :15 Yes:43
Median : 50.50 Median :44.00 40-44 :15
Mean : 50.50 Mean :44.38 45-49 :13
3rd Qu.: 75.25 3rd Qu.:55.00 35-39 :12
Max. :100.00 Max. :69.00 20-39 :10
(Other):18
agegrp
20-39 30-34 35-39 40-44 45-49 50-54 55-59 60-69 Sum
10 15 12 15 13 8 17 10 100
chd
agegrp No Yes Sum
20-39 9 1 10
30-34 13 2 15
35-39 9 3 12
40-44 10 5 15
45-49 7 6 13
50-54 3 5 8
55-59 4 13 17
60-69 2 8 10
Sum 57 43 100
20-39 30-34 35-39 40-44 45-49 50-54 55-59 60-69
0.1000000 0.1333333 0.2500000 0.3333333 0.4615385 0.6250000 0.7647059 0.8000000
Call:
glm(formula = chd ~ age, family = binomial, data = chdage)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.9718 -0.8456 -0.4576 0.8253 2.2859
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.30945 1.13365 -4.683 2.82e-06 ***
age 0.11092 0.02406 4.610 4.02e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 136.66 on 99 degrees of freedom
Residual deviance: 107.35 on 98 degrees of freedom
AIC: 111.35
Number of Fisher Scoring iterations: 4
(Intercept) age
(Intercept) 1.28517059 -0.0266769747
age -0.02667697 0.0005788748
age
1.117307
Waiting for profiling to be done...
2.5 % 97.5 %
1.069222 1.175868
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.