Nothing
#' Calculates conditionals for continuous mixture models
#'
#' Calculates posterior expected values (conditionals) of continuously distributed random coefficients, as well as their standard deviations.
#'
#' This functions is only meant for use with continuous distributions
#' @param model Model object. Estimated model object as returned by function \link{apollo_estimate}.
#' @param apollo_probabilities Function. Returns probabilities of the model to be estimated. Must receive three arguments:
#' \itemize{
#' \item \strong{\code{apollo_beta}}: Named numeric vector. Names and values of model parameters.
#' \item \strong{\code{apollo_inputs}}: List containing options of the model. See \link{apollo_validateInputs}.
#' \item \strong{\code{functionality}}: Character. Can be either \strong{\code{"components"}}, \strong{\code{"conditionals"}}, \strong{\code{"estimate"}} (default), \strong{\code{"gradient"}}, \strong{\code{"output"}}, \strong{\code{"prediction"}}, \strong{\code{"preprocess"}}, \strong{\code{"raw"}}, \strong{\code{"report"}}, \strong{\code{"shares_LL"}}, \strong{\code{"validate"}} or \strong{\code{"zero_LL"}}.
#' }
#' @param apollo_inputs List grouping most common inputs. Created by function \link{apollo_validateInputs}.
#' @return List of matrices. Each matrix has dimensions nIndiv x 3. One matrix per random component.
#' Each row of each matrix contains the indivID of an individual, and the
#' posterior mean and s.d. of this random component for this individual
#' @export
apollo_mixConditionals=function(model, apollo_probabilities, apollo_inputs){
if(is.null(apollo_inputs$silent)) silent = FALSE else silent = apollo_inputs$silent
apollo_beta = model$estimate
apollo_fixed = model$apollo_fixed
#if(!silent) apollo_print("Updating inputs...")
#apollo_inputs <- apollo_validateInputs(silent=TRUE, recycle=TRUE)
### Warn the user in case elements in apollo_inputs are different from those in the global environment
apollo_compareInputs(apollo_inputs)
apollo_control = apollo_inputs[["apollo_control"]]
database = apollo_inputs[["database"]]
draws = apollo_inputs[["draws"]]
apollo_randCoeff = apollo_inputs[["apollo_randCoeff"]]
apollo_draws = apollo_inputs[["apollo_draws"]]
apollo_lcPars = apollo_inputs[["apollo_lcPars"]]
apollo_checkArguments(apollo_probabilities,apollo_randCoeff,apollo_lcPars)
if(is.function(apollo_inputs$apollo_lcPars)) stop("INCORRECT FUNCTION/SETTING USE - The function \'apollo_conditionals\' is not applicable for models containing latent class components!")
if(is.null(apollo_control$HB)) apollo_control$HB=FALSE
if(apollo_control$HB) stop("INCORRECT FUNCTION/SETTING USE - The function \'apollo_conditionals\' is not applicable for models estimated using HB!")
if(is.null(apollo_control$workInLogs)) apollo_control$workInLogs=FALSE
if(apollo_control$workInLogs) stop("INCORRECT FUNCTION/SETTING USE - The function \'apollo_conditionals\' is not applicable for models using the workInLogs setting!")
if(!apollo_control$mixing) stop("INCORRECT FUNCTION/SETTING USE - Conditionals can only be calculated for mixture models!")
if(anyNA(draws)) stop("INCORRECT FUNCTION/SETTING USE - Random draws have not been specified despite setting mixing=TRUE")
if(apollo_draws$interNDraws==0) stop("INCORRECT FUNCTION/SETTING USE - This function is only for models that incorporate inter-individual draws!")
if(apollo_draws$intraNDraws>0) cat("Your model contains intra-individual draws which will be averaged over for conditionals!\n")
if(!silent) apollo_print("Calculating conditionals...")
### Run apollo_randCoeff
env <- list2env( c(as.list(apollo_beta), apollo_inputs$database, apollo_inputs$draws),
hash=TRUE, parent=parent.frame() )
environment(apollo_randCoeff) <- env
randcoeff <- apollo_randCoeff(apollo_beta, apollo_inputs)
if(any(sapply(randcoeff, is.function))){
randcoeff = lapply(randcoeff,
function(f) if(is.function(f)){ environment(f) <- env; return(f()) } else { return(f) })
}
### Get likelihood
P <- apollo_probabilities(apollo_beta, apollo_inputs, functionality="conditionals")
indivID <- database[,apollo_control$indivID]
obsPerIndiv <- setNames(sapply(as.list(unique(indivID)),function(x) sum(indivID==x)),unique(indivID))
conditionals=list()
for(j in 1:length(randcoeff)){
if(length(dim(randcoeff[[j]]))==3) randcoeff[[j]]=colSums(aperm(randcoeff[[j]], perm=c(3,1,2)))/dim(randcoeff[[j]])[3]
b=randcoeff[[j]]
b <- rowsum(b, group=database[,apollo_control$indivID], reorder=FALSE)
b=b/obsPerIndiv
bn=(rowSums(b*P))/rowSums(P)
bns=sqrt(rowSums(P*(b-bn)^2)/(rowSums(P)))
conditionals[[names(randcoeff)[j]]]=data.frame(ID=unique(database[,apollo_control$indivID]),
post.mean=bn,
post.sd=bns)
rownames(conditionals[[names(randcoeff)[j]]])=c()
}
if(length(conditionals)==1) conditionals=conditionals[[1]]
return(conditionals)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.