R/apollo_mixUnconditionals.R

Defines functions apollo_mixUnconditionals

Documented in apollo_mixUnconditionals

#' Returns draws for continuously distributed random parameters in mixture model
#'
#' Returns draws (unconditionals) for random parameters in model, including interactions with deterministic covariates.
#'
#' This functions is only meant for use with continuous distributions
#' @param model Model object. Estimated model object as returned by function \link{apollo_estimate}.
#' @param apollo_probabilities Function. Returns probabilities of the model to be estimated. Must receive three arguments:
#'                          \itemize{
#'                            \item \strong{\code{apollo_beta}}: Named numeric vector. Names and values of model parameters.
#'                            \item \strong{\code{apollo_inputs}}: List containing options of the model. See \link{apollo_validateInputs}.
#'                            \item \strong{\code{functionality}}: Character. Can be either \strong{\code{"components"}}, \strong{\code{"conditionals"}}, \strong{\code{"estimate"}} (default), \strong{\code{"gradient"}}, \strong{\code{"output"}}, \strong{\code{"prediction"}}, \strong{\code{"preprocess"}}, \strong{\code{"raw"}}, \strong{\code{"report"}}, \strong{\code{"shares_LL"}}, \strong{\code{"validate"}} or \strong{\code{"zero_LL"}}.
#'                          }
#' @param apollo_inputs List grouping most common inputs. Created by function \link{apollo_validateInputs}.
#' @return List of object, one per random coefficient.
#'         With inter-individual draws only, this will be a matrix, with one row per individual, and one column per draw.
#'         With intra-individual draws, this will be a three-dimensional array, with one row per observation, inter-individual draws in the second dimension, and intra-individual draws in the third dimension.
#' @export
apollo_mixUnconditionals <- function(model, apollo_probabilities, apollo_inputs){
  
  if(is.null(apollo_inputs$silent)) silent = FALSE else silent = apollo_inputs$silent
  apollo_beta  = model$estimate
  apollo_fixed = model$apollo_fixed
  
  #if(!silent) apollo_print("Updating inputs...")
  #apollo_inputs <- apollo_validateInputs(silent=TRUE, recycle=TRUE)
  ### Warn the user in case elements in apollo_inputs are different from those in the global environment
  apollo_compareInputs(apollo_inputs)
  
  apollo_control   = apollo_inputs[["apollo_control"]]
  database         = apollo_inputs[["database"]]
  draws            = apollo_inputs[["draws"]]
  apollo_randCoeff = apollo_inputs[["apollo_randCoeff"]]
  apollo_draws     = apollo_inputs[["apollo_draws"]]
  apollo_lcPars     = apollo_inputs[["apollo_lcPars"]]
  apollo_checkArguments(apollo_probabilities,apollo_randCoeff,apollo_lcPars)
  
  if(is.null(apollo_control$HB)) apollo_control$HB=FALSE
  if(apollo_control$HB) stop("INCORRECT FUNCTION/SETTING USE - The function \"apollo_unconditionals\" is not applicables for models estimated using HB!") 
  #if(is.function(apollo_inputs$apollo_lcPars)) stop("INCORRECT FUNCTION/SETTING USE - The function \"apollo_unconditionals\" is not applicables for models containing latent class components!")
  
  ### Validate input
  if(!apollo_control$mixing) stop("INCORRECT FUNCTION/SETTING USE - Sample level random parameters can only be produced for mixture models!")
  if(anyNA(draws)) stop("INCORRECT FUNCTION/SETTING USE - Random draws have not been specified despite setting mixing=TRUE")
  
  ### Run apollo_randCoeff
  env <- list2env( c(as.list(apollo_beta), apollo_inputs$database, apollo_inputs$draws), 
                   hash=TRUE, parent=parent.frame() )
  environment(apollo_randCoeff) <- env
  randcoeff <- apollo_randCoeff(apollo_beta, apollo_inputs)
  if(any(sapply(randcoeff, is.function))){
    randcoeff = lapply(randcoeff, 
                       function(f) if(is.function(f)){ environment(f) <- env; return(f()) } else { return(f) })
  }
  
  if(apollo_draws$intraNDraws==0){
    
    indivID <- database[,apollo_control$indivID]
    nObsPerIndiv <- setNames(sapply(as.list(unique(indivID)),function(x) sum(indivID==x)),unique(indivID))
    nIndiv       <- length(nObsPerIndiv)
    firstRows    <- rep(1, nIndiv)
    for(i in 2:nIndiv) firstRows[i] <- firstRows[i-1] + nObsPerIndiv[i-1]
    j=1
    for(j in 1:length(randcoeff)){
      randcoeff[[j]]=randcoeff[[j]][firstRows,]  
    }
  }
  
  if(!silent) apollo_print("Unconditional distributions computed") 
  return(randcoeff)
}

Try the apollo package in your browser

Any scripts or data that you put into this service are public.

apollo documentation built on Oct. 2, 2024, 1:08 a.m.