R/apollo_panelProd.R

Defines functions apollo_panelProd

Documented in apollo_panelProd

# UPDATED
#' Calculates product across observations from same individual.
#' 
#' Multiplies likelihood of observations from the same individual, or adds the log of them.
#' 
#' This function should be called inside apollo_probabilities only if the data has a panel structure.
#' It should be called after apollo_avgIntraDraws if intra-individual draws are used.
#' 
#' @param P List of vectors, matrices or 3-dim arrays. Likelihood of the model components.
#' @param apollo_inputs List grouping most common inputs. Created by function \link{apollo_validateInputs}.
#' @param functionality Character. Setting instructing Apollo what processing to apply to the likelihood function. This is in general controlled by the functions that call \code{apollo_probabilities}, though the user can also call \code{apollo_probabilities} manually with a given functionality for testing/debugging. Possible values are:
#'                      \itemize{
#'                        \item \strong{\code{"components"}}: For further processing/debugging, produces likelihood for each model component (if multiple components are present), at the level of individual draws and observations.
#'                        \item \strong{\code{"conditionals"}}: For conditionals, produces likelihood of the full model, at the level of individual inter-individual draws.
#'                        \item \strong{\code{"estimate"}}: For model estimation, produces likelihood of the full model, at the level of individual decision-makers, after averaging across draws.
#'                        \item \strong{\code{"gradient"}}: For model estimation, produces analytical gradients of the likelihood, where possible.
#'                        \item \strong{\code{"output"}}: Prepares output for post-estimation reporting.
#'                        \item \strong{\code{"prediction"}}: For model prediction, produces probabilities for individual alternatives and individual model components (if multiple components are present) at the level of an observation, after averaging across draws.
#'                        \item \strong{\code{"preprocess"}}: Prepares likelihood functions for use in estimation.
#'                        \item \strong{\code{"raw"}}: For debugging, produces probabilities of all alternatives and individual model components at the level of an observation, at the level of individual draws.
#'                        \item \strong{\code{"report"}}: Prepares output summarising model and choiceset structure.
#'                        \item \strong{\code{"shares_LL"}}: Produces overall model likelihood with constants only.
#'                        \item \strong{\code{"validate"}}: Validates model specification, produces likelihood of the full model, at the level of individual decision-makers, after averaging across draws.
#'                        \item \strong{\code{"zero_LL"}}: Produces overall model likelihood with all parameters at zero.
#'                      }
#' @return Argument \code{P} with (for most functionalities) the original contents after multiplying across observations at the individual level. Shape depends on argument \code{functionality}.
#'         \itemize{
#'           \item \strong{\code{"components"}}: Returns \code{P} without changes.
#'           \item \strong{\code{"conditionals"}}: Returns \code{P} without averaging across draws. Drops all components except \code{"model"}.
#'           \item \strong{\code{"estimate"}}: Returns \code{P} containing the likelihood of the model after multiplying observations at the individual level. Drops all components except \code{"model"}.
#'           \item \strong{\code{"gradient"}}: Returns \code{P} containing the gradient of the likelihood after applying the product rule across observations for the same individual.
#'           \item \strong{\code{"output"}}: Returns \code{P} containing the likelihood of the model after multiplying observations at the individual level.
#'           \item \strong{\code{"prediction"}}: Returns \code{P} containing the probabilities/likelihoods of all alternatives for all model components averaged across inter-individual draws.
#'           \item \strong{\code{"preprocess"}}: Returns \code{P} without changes.           
#'           \item \strong{\code{"raw"}}: Returns \code{P} without changes.
#'           \item \strong{\code{"report"}}: Returns \code{P} without changes.
#'           \item \strong{\code{"shares_LL"}}: Returns \code{P} containing the likelihood of the model after multiplying observations at the individual level.
#'           \item \strong{\code{"validate"}}: Returns \code{P} containing the likelihood of the model averaged across inter-individual draws. Drops all components except \code{"model"}.
#'           \item \strong{\code{"zero_LL"}}: Returns \code{P} containing the likelihood of the model after multiplying observations at the individual level.
#'         }
#' @export
apollo_panelProd <- function(P, apollo_inputs, functionality){

  # ###################################################################### #
  #### load and check inputs, prepare variables that are used elsewhere ####
  # ###################################################################### #

  apollo_control = apollo_inputs[["apollo_control"]]
  if(apollo_control$HB==TRUE) stop('INCORRECT FUNCTION/SETTING USE - Function apollo_panelProd should not be used when apollo_control$HB==TRUE!')
  
  inputIsList <- is.list(P)
  indivID <- apollo_inputs$database[, apollo_control$indivID]
  
  

  # ############################################### #
  #### functionalities with untransformed return ####
  # ############################################### #
  
  if(functionality%in%c("components","prediction","preprocess","raw", "report")) return(P)
  
  # Additional check
  if(!apollo_control$panelData) stop('INCORRECT FUNCTION/SETTING USE - Panel data setting not used, so multiplying over choices using apollo_panelProd not applicable!')
  
  # ########################################## #
  #### functionality="gradient"             ####
  # ########################################## #

  if(functionality=="gradient"){
    # Checks
    if(!is.list(P)) stop("INTERNAL ISSUE - Input P should be a list with at least one component (called model)")
    if("model" %in% names(P)) P <- P$model
    if(is.null(P$like) || is.null(P$grad)) stop("INTERNAL ISSUE - Missing like and/or grad elements inside components")
    if(apollo_control$workInLogs && apollo_control$analyticGrad) stop("INTERNAL ISSUE - workInLogs cannot be used in conjunction with analyticGrad")
    
    # Remove zeros from P$like
    P$like[P$like==0] <- 1e-50 #1e-100 #1e-16 #1e-300
    
    ### untransformed return if panelProd is overriden
    if(!apollo_control$overridePanel){
    # Average gradient respecting product rule
    tmp <- apollo_panelProd(P$like, apollo_inputs, "estimate")
    P$grad <- lapply(P$grad, function(g) tmp*rowsum(g/P$like, group=indivID, reorder=FALSE))
    P$like <- tmp
    }
    return(P)
  }
  
  # ############################# #
  #### functionality="hessian" ####
  # ############################# #
  if(functionality=="hessian"){
    
    # If there are multiple components, only keep "model"
    if("model" %in% names(P)) P <- P$model
    
    # Remove zeros from P$like
    P$like[P$like==0] <- 1e-50 #1e-100 #1e-16 #1e-300
    
    # Pre-calculate necessary elements for the hessian
    Lt   <- P[["like"]]
    Ln   <- apollo_panelProd(Lt, apollo_inputs, "estimate")
    Ln[Ln==0] <- 1e-50 # Remove zeros from L (is it really necessary?)
    d1Lt <- P[["grad"]]
    d1Ln <- lapply(d1Lt, function(g) Ln*rowsum(g/Lt, group=indivID, reorder=FALSE))
    N    <- dim(d1Ln[[1]])[1]
    K    <- length(P[["grad"]]) # number of parameters
    d2Ln <- vector(mode="list", length=K) #array(0,c(N,K,K))
    
    # Loop to calculate hessian
    for(k1 in 1:K){
      d2Ln[[k1]] <- vector(mode="list", length=K)
      for(k2 in 1:k1){
        tmp <- (P[["hess"]][[k1]][[k2]] - d1Lt[[k1]]*d1Lt[[k2]]/Lt)/Lt
        if(is.array(tmp)=="a") stop("SPECIFICATION ISSUE - ",
                                    "You must average over intra-individual ",
                                    "draws before calling apollo_panelProd.")
        tmp <- rowsum(tmp, group=indivID, reorder=FALSE)
        if(is.matrix(tmp) && dim(tmp)[2]==1) tmp <- as.vector(tmp)
        d2Ln[[k1]][[k2]] = d1Ln[[k2]]*d1Ln[[k1]]/Ln + Ln*tmp
        d2Ln[[k2]][[k1]] = d2Ln[[k1]][[k2]]
      }
    }; rm(tmp)
    
    H <- list(
      like = Ln,   # likelihoods L at person level
      grad = d1Ln, # first derivatives of L at the person level
      hess = d2Ln) # second derivatives of L at the person level
    return(H)
    
  }
  # ####################################### #
  #### functionality="zero_LL/shares_LL" ####
  # ####################################### #
  
  if(functionality %in% c('zero_LL', 'shares_LL')){
    if(!inputIsList) P <- list(model=P)
    if(any(sapply(P, function(p) is.array(p) && length(dim(p)==3)))) stop('SPECIFICATION ISSUE - Need to average over intra-individual draws first before multiplying over choices!')
    for(j in 1:length(P)){
      test <- is.vector(P[[j]]) && length(P[[j]])==length(indivID)
      test <- test || is.matrix(P[[j]]) && nrow(P[[j]])==length(indivID)
      if(test){
        P[[j]] <- rowsum(log(P[[j]]), group=indivID, reorder=FALSE)
        if(!apollo_control$workInLogs) P[[j]] <- exp(P[[j]])
      }
      if(is.matrix(P[[j]]) && ncol(P[[j]])==1) P[[j]] <- as.vector(P[[j]])
    }
    if(!inputIsList) P <- P[[1]]
    return(P)
  }
  
  # ########################################################### #
  #### functionality="estimate/conditionals/validate/output" ####
  # ########################################################### #
  
  if(functionality %in% c("estimate", "conditionals","output","validate")){
    ### Standarise input
    if(inputIsList && is.null(P[["model"]])) stop("SYNTAX ISSUE - The list \"P\" should contain an element called \"model\"!")
    if(functionality %in% c("estimate", "conditionals","validate") && inputIsList) P <- P["model"]  ### only keep the model element, but P is still a list
    if(!inputIsList) P <- list(model=P)
    ### If panel must be overriden, return without multiplying rows
    if(functionality=="estimate" && apollo_control$overridePanel){
      if(apollo_control$workInLogs) return(lapply(P, log)) else return(P) # DP fix 02/03/2023
    } 
    ###
    for(j in 1:length(P)){
      if(is.array(P[[j]]) && length(dim(P[[j]]))==3) stop('SPECIFICATION ISSUE - Need to average over intra-individual draws first before multiplying over choices!')
      if(is.vector(P[[j]]) || (is.matrix(P[[j]]) && !apollo_control$workInLogs) ){
        if(is.vector(P[[j]]) && length(P[[j]])==length(unique(indivID))) stop('SPECIFICATION ISSUE - You attempted to call the function apollo_panelProd at a stage where the probabilities are already at the individual level!')
        if(is.matrix(P[[j]]) && nrow(P[[j]])==length(unique(indivID))) stop('SPECIFICATION ISSUE - You attempted to call the function apollo_panelProd at a stage where the probabilities are already at the individual level!')
        P[[j]] <- rowsum(log(P[[j]]), group=indivID, reorder=FALSE)
        if(!apollo_control$workInLogs) P[[j]] <- exp(P[[j]])
      }
      if(apollo_control$panelData && is.matrix(P[[j]]) && apollo_control$workInLogs && nrow(P[[j]])==length(indivID)){
        # approach to use if working in logs with mixing
        if(is.matrix(P[[j]]) && nrow(P[[j]])==length(unique(indivID))) stop('SPECIFICATION ISSUE - You attempted to call the function apollo_panelProd at a stage where the probabilities are already at the individual level!')
        B    <- rowsum(log(P[[j]]), group=indivID, reorder=FALSE) # nIndiv x nDraws
        Bbar <- apply(B, MARGIN=1, function(r) mean(r[is.finite(r)]) ) # nIndiv x 1 ### FIX: 15/5/2020
        P[[j]] <- ifelse(is.finite(Bbar), Bbar + log( rowMeans(exp(B-Bbar)) ), -Inf) # nIndiv x 1 ### FIX 18/5/2020
      }
      if(is.matrix(P[[j]]) && ncol(P[[j]])==1) P[[j]] <- as.vector(P[[j]])
    }
    if(!inputIsList) P <- P[[1]]
    #if(functionality %in% c("estimate", "conditionals","validate") && inputIsList) Pout <- list(model=Pout) # Removed. Pout is already a list
    return(P)
  }

}

Try the apollo package in your browser

Any scripts or data that you put into this service are public.

apollo documentation built on Oct. 2, 2024, 1:08 a.m.