R/balance.R

Defines functions plot.balance print.balance

Documented in plot.balance print.balance

# balance function after 2019

balance <- function (rawdata, treat, matched, estimand="ATT")
                     #factor = TRUE)
{
  # rawdata: the full covariate dataset
  # treat: the vector of treatment assignments for the full dataset
  # matched: vector of weights to apply to the full dataset to create the
  # restructured data:
  # --for matching without replacement these will all be 0's and 1's
  # --for one-to-one matching with replacement these will all be non-negative
  #   integers
  # --for IPTW or more complicated matching methods these could be any
  #   non-negative numbers
  # estimand: can either be ATT, ATC, or ATE
  #require("Hmisc")
  if(missing(rawdata)) stop("rawdata is required")
    if(missing(matched)) stop("argument matched is required")
      if(missing(treat)) stop("treatment vector (treat) is required")
        cat("Balance diagnostics assume that the estimand is the",estimand,"\n")
  #
  #raw.dat <- data.frame(rawdata, treat = treat)
    covnames <- colnames(rawdata)
    if (is.null(covnames)){
        cat("No covariate names provided.  Generic names will be generated.")
        covnames = paste("v",c(1:ncol(rawdata)),sep="")
    }
    K <- length(covnames)
    diff.means <- matrix(NA, K, 5)
    var.t <- numeric(K)
    var.c <- numeric(K)
    std.denom <- numeric(K)
    binary <- rep(1,K)
  #
  # First we calculate balance on the RAW DATA
  # Columns are (1) treat mean, (2) control mean, (3) diff in means, (4) abs std diff,
  # (5) ratio of sds
    for (i in 1:K) {
    # separate means by group
        diff.means[i, 1] <- mean(rawdata[treat==1, i])
        diff.means[i, 2] <- mean(rawdata[treat==0, i])
    # separate variances by group == only used as input to calculations below
        var.t[i] <- var(rawdata[(treat == 1), i])
        var.c[i] <- var(rawdata[(treat == 0), i])
    # denominator in standardized difference calculations
        if(estimand=="ATE"){std.denom[i] <- sqrt((var.t[i]+var.c[i])/2)}
        else{
          std.denom[i] <- ifelse(estimand=="ATT",sqrt(var.t[i]),sqrt(var.c[i]))
      }
    # difference in means
      diff.means[i, 3] <- diff.means[i, 1] - diff.means[i, 2]
    # standardized difference in means (sign intact)
      diff.means[i, 4] <- abs(diff.means[i, 3]/std.denom[i])
      if(length(unique(rawdata[,covnames[i]]))>2){
          binary[i] = 0
      }
  }
    #ifelse(estimand="ATT",sqrt(var.c[i]/var.t[i]),sqrt(var.t[i]/var.c[i]))
#  dimnames(diff.means) <- list(covnames[-(K + 1)], c("treat", "control", "unstd.diff",
#                                                     "abs.std.diff", "ratio"))
#  diff.means[is.na(diff.means)] = "--"  #maybe only worry about in print function
  dimnames(diff.means) <- list(covnames, c("treat", "control", "unstd.diff",
     "abs.std.diff", "ratio"))
  # Now we calculate balance on the restructured data
  diff.means.matched = matrix(NA, K, 5)
  #
  for (i in 1:K) {
    wts0 <- matched[treat==0]
    # separate means by group
    diff.means.matched[i, 1] <- mean(rawdata[treat == 1, i])
    diff.means.matched[i, 2] <- weighted.mean(rawdata[treat==0, i],w=wts0)
    # separate variances by group == only used as input to calculations below
    # these overwrite the variance above
    var.t[i] <- var(rawdata[treat == 1, i])
    var.c[i] <- as.numeric(stats::cov.wt(rawdata[treat == 0, i, drop = FALSE], wt = wts0)$cov)
    # difference in means
    diff.means.matched[i, 3] <- diff.means.matched[i, 1] - diff.means.matched[i, 2]
    # absolute standardized difference in means (denominator is stolen from
    # calculations on raw data above)
    diff.means.matched[i, 4] <- abs(diff.means.matched[i, 3])/std.denom[i]
    if(length(unique(rawdata[,covnames[i]]))>2){
      # just for binary
      # ratio of sds (treat over control:  should we change to comparison over inferential)
      diff.means.matched[i, 5] <- sqrt(var.c[i]/var.t[i])
  }
}
  #dimnames(diff.means.matched) <- list(covnames[-(K + 1)], c("treat", "control", "unstd.diff",
  #                                                            "abs.std.diff", "ratio"))
dimnames(diff.means.matched) <- list(covnames, c("treat", "control", "unstd.diff",
 "abs.std.diff", "ratio"))
  #
out <- list(diff.means.raw = diff.means, diff.means.matched = diff.means.matched,
    covnames = covnames, binary = binary)
class(out) <- "balance"
return(out)
}


print.balance <- function(x, ..., combined=FALSE, digits= 2)
{
   if(combined==FALSE){
      cat("Balance Statistics for Unmatched Data\n")
      cat("--\n")
      print(round(x$diff.means.raw, digits=digits))
      cat("--\n")
      cat("\n")
      cat("Balance Statistics for Matched Data\n")
      cat("--\n")
      print(round(x$diff.means.matched, digits=digits), na.print="--")
      cat("--\n")
      cat("\n")
  }
  else{
   cat("Balance Statistics\n")
   cat("--\n")
   print(round(cbind(x$diff.means.raw,x$diff.matched.raw)[,c(4,9,5,10)],
     digits=digits), na.print="--")
}
}

### NEXT NEED TO FIGURE OUT HOW TO REVERSE THE ORDER OF THE COVARIATES

plot.balance <- function(x, longcovnames=NULL, which.covs="mixed",
    v.axis=TRUE, cex.main=1, cex.vars=1, cex.pts=1,
    mar=c(4, 3, 5.1, 2), plot=TRUE, x.max = NULL,...)
{
    # if which.covs = mixed then it plots all as std diffs
    # if which.covs = binary it only plots binary and as abs unstd diffs
    # if which.covs = cont it only plots non-binary and as abs std diffs
    #

    covnames <- x$covnames
    if(!is.null(x.max)){
        x.range = c(0,x.max)
    }
    # if(which.covs=="binary") {
    #   cat("condition satisfied \n")
    # }

    # if plotting all, then use the standardized diff for all
    if(which.covs == "mixed"){
        pts <-  x$diff.means.raw[,4]                    # before matched.dat
        pts2 <- x$diff.means.matched[,4]                  # after matched
        K <- length(pts)
        idx <- 1:K
        main="Absolute Standardized Difference in Means"
    }
    #if plotting just binary use the unstandardized difference
    # for the plot make it the absolute value of
    if(which.covs == "binary"){
        pts <-  abs(x$diff.means.raw[x$binary==TRUE,3])      # before matched.dat
        pts2 <- abs(x$diff.means.matched[x$binary==TRUE,3])  # after matched
        K <- length(pts)
        idx <- 1:K
        main="Absolute Difference in Means"
        covnames = covnames[x$binary==TRUE]
    }
    #if plotting just continuous use the standardized difference
    if(which.covs == "cont"){
        pts <-  x$diff.means.raw[x$binary==FALSE,4]      # before matched
        pts2 <- x$diff.means.matched[x$binary==FALSE,4]  # after matched
        K <- length(pts)
        idx <- 1:K
        main="Absolute Standardized Difference in Means"
        covnames = covnames[x$binary==FALSE]
    }
    cat(pts,"\n")
    # tune the graphic console
    #par (mar=mar, mgp=mgp, oma=oma, tcl=tcl)

    par(mar = mar)
    if (is.null(longcovnames)) {
        longcovnames <- covnames
        maxchar <- max(sapply(longcovnames, nchar))
    }
    else {
        maxchar <- max(sapply(longcovnames, nchar))
    }
    min.mar <- par("mar")
    mar[2] <- max(min.mar[2], trunc(mar[2] + maxchar/10)) + mar[2] + 0.5
    par(mar = mar)

    ## now reverse the order of everything so the plot proceeds from
    ## to top to bottom with respect to original ordering of variables
    pts = rev(pts)
    pts2 = rev(pts2)
    longcovnames = rev(longcovnames)

    if(plot){
        # plot the estimates
        if(is.null(x.max)){
            plot(c(pts,pts2), c(idx,idx),
                #xlim=c(0, max(c(pts,pts2))),
                bty="n", xlab="", ylab="",
                xaxt="n", yaxt="n", type="n",
                main=main, cex.main=cex.main)
        }
        if(!is.null(x.max)){
            plot(c(pts,pts2), c(idx,idx),
                bty="n", xlab="", ylab="",
                xaxt="n", yaxt="n", type="n",
                xlim=x.range,
                main=main, cex.main=cex.main)
        }
        abline(v=0, lty=2)
        points(pts, idx, cex=cex.pts)          # before matched
        points(pts2, idx, pch=19, cex=cex.pts) # after matched
        if (v.axis){
            axis(3)
        }
        if (is.null(longcovnames)){
            axis(2, at=1:K, labels=covnames[1:K],
                las=2, hadj=1, lty=0, cex.axis=cex.vars)
        }
        else{
            axis(2, at=1:K, labels=longcovnames[1:K],
                las=2, hadj=1, lty=0, cex.axis=cex.vars)
        }
    }
    else{
        plot(c(pts,pts2), c(idx,idx),
            bty="n", xlab="", ylab="",
            xaxt="n", yaxt="n", #xaxs="i",
            #yaxs="i",
            type="n", axes=FALSE,
            #ylim=c(max(idx)+.25, min(idx)-.25),
            #xlim=x.range,
            main="", cex.main=cex.main,...)
    }
    return(list("raw"=pts, "matched"=pts2))
}

Try the arm package in your browser

Any scripts or data that you put into this service are public.

arm documentation built on June 25, 2024, 1:14 a.m.