R/ruleExplorer.R

Defines functions ruleExplorer

Documented in ruleExplorer

#######################################################################
# arulesViz - Visualizing Association Rules and Frequent Itemsets
# Copyright (C) 2021 Michael Hahsler
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# An earlier version of ruleExplorer was based on code written by Andrew Brooks.
# See: https://github.com/brooksandrew/Rsenal
#

#' Explore Association Rules Interactively
#'
#' Explore association rules using interactive manipulations and visualization
#' using \pkg{shiny}.
#'
#'
#' @aliases ruleExplorer explore
#' @param x a set of rules, a transactions object or a data.frame.
#' @param sidebarWidth width of the sidebar as a number between 0 (= 0% of the
#' display width) and 12 (= 100% of the display width).
#' @param graphHeight height of the plots in pixels. Increase if you have a
#' larger/higher resolution display.
#' @return returns a shiny app.
#' @author Tyler Giallanza and Michael Hahsler.  Adapted from functions
#' originally created by Andrew Brooks. See
#' [Rsenal](https://github.com/brooksandrew/Rsenal) for the original code.
#' @seealso [plot()] with `engine = "html"`,
#' [inspectDT()], [arules::apriori()].
#' @references Hahsler M (2017). arulesViz: Interactive Visualization of
#' Association Rules with R. *R Journal,* 9(2):163-175. ISSN 2073-4859.
#' \doi{10.32614/RJ-2017-047}.
#' @examples
#' \dontrun{
#' data(Groceries)
#'
#' # explore pre-mined rules
#' rules <- apriori(Groceries,
#'   parameter = list(support = 0.001, confidence = 0.8)
#' )
#' rules
#'
#' ruleExplorer(rules)
#'
#' # mine and explore rules on the fly
#' data(iris)
#' ruleExplorer(iris)
#' }
#' @export
ruleExplorer <-
  function(
      x,
      sidebarWidth = 2,
      graphHeight = "600px") {
    check_installed(c("shiny", "shinythemes"))

    shinyTheme <- shinythemes::shinytheme("yeti")

    message("ruleExplorer started.")

    # show warnings immediately
    o <- options(warn = 1)
    on.exit(options(o))

    ### rounding helpers
    roundUp <- function(x, digits = 3) {
      round(x + .5 * 10^-digits, digits)
    }
    roundDown <- function(x, digits = 3) {
      round(x - .5 * 10^-digits, digits)
    }

    ### dataset can be rules or transactions

    ### make sure we have transactions or rules
    if (!is(x, "rules") && !is(x, "transactions")) {
      message("Converting dataset into transactions.")
      x <- transactions(x)
    }

    ### default measures to use
    xIndexCached <- "support"
    yIndexCached <- "confidence"
    zIndexCached <- "lift"

    ### javascript cannot handle very large arrays
    itemLabels <- itemLabels(x)
    if (length(itemLabels) > 10000) {
      itemLabels <-
        list("Disabled because of excessive number of items (>10,000)" = c(""))
    }

    if (is(x, "rules")) {
      if (length(x) < 1) {
        stop("Zero rules provided!")
      }

      minSupp <- roundDown(min(quality(x)$support), 5)
      maxSupp <- roundUp(max(quality(x)$support), 5)
      minConf <- roundDown(min(quality(x)$confidence), 3)
      maxConf <- roundUp(max(quality(x)$confidence), 3)
      minLift <- floor(min(quality(x)$lift))
      maxLift <- ceiling(max(quality(x)$lift))

      supp <- minSupp
      conf <- minConf
      lift <- minLift
    } else {
      ### transactions
      minSupp <- 0
      maxSupp <- 1
      minConf <- 0
      maxConf <- 1
      minLift <- 0
      maxLift <- 25
      lift <- 0

      defaultParam <- new("APparameter")
      supp <- defaultParam@support
      conf <- defaultParam@confidence
    }

    ## create Shiny UI and server code
    shiny::shinyApp(
      ui = shiny::shinyUI(
        shiny::fluidPage(
          theme = shinyTheme,
          shiny::titlePanel("Association Rule Explorer"),
          shiny::sidebarLayout(
            shiny::sidebarPanel(
              shiny::htmlOutput("numRulesOutput"),
              shiny::br(),
              shiny::sliderInput(
                "supp",
                "Minimum Support:",
                min = minSupp,
                max = maxSupp,
                value = supp,
                step = (maxSupp - minSupp) / 10000,
                sep = ""
              ),
              shiny::sliderInput(
                "conf",
                "Minimum Confidence:",
                min = minConf,
                max = maxConf,
                value = conf,
                step = (maxConf - minConf) / 1000,
                sep = ""
              ),
              shiny::sliderInput(
                "lift",
                "Minimum Lift:",
                min = minLift,
                max = maxLift,
                value = lift,
                step = (maxLift - minLift) / 1000,
                sep = ""
              ),
              shiny::sliderInput(
                "length",
                "Rule length (from-to):",
                min = 2,
                max = 20,
                value = c(2, 10),
                step = 1,
                sep = ""
              ),
              shiny::em(shiny::HTML("Filter rules by items:")),
              shiny::selectInput(
                "colsType",
                NULL,
                c("Exclude items:" = "rem", "Require items:" = "req")
              ),
              shiny::uiOutput("choose_columns"),
              shiny::selectInput(
                "colsLHSType",
                NULL,
                c(
                  "Exclude items from LHS:" = "rem",
                  "Require items in LHS:" = "req"
                )
              ),
              shiny::uiOutput("choose_lhs"),
              shiny::selectInput(
                "colsRHSType",
                NULL,
                c(
                  "Exclude items from RHS:" = "rem",
                  "Require items in RHS:" = "req"
                )
              ),
              shiny::uiOutput("choose_rhs"),
              width = sidebarWidth
            ),
            shiny::mainPanel(
              shiny::tabsetPanel(
                id = "tabs",
                shiny::tabPanel(
                  "Data Table",
                  value = "datatable",
                  shiny::br(),
                  DT::dataTableOutput("rulesDataTable")
                ),
                shiny::tabPanel(
                  "Scatter",
                  value = "scatter",
                  shiny::wellPanel(
                    shiny::fluidRow(
                      shiny::column(2, shiny::uiOutput("xAxisSelectInput")),
                      shiny::column(2, shiny::uiOutput("yAxisSelectInput")),
                      shiny::column(2, shiny::uiOutput("cAxisSelectInput")),
                      shiny::column(
                        3,
                        shiny::sliderInput(
                          "jitter_scatter",
                          "Jitter",
                          min = 0,
                          max = 1,
                          value = 0,
                          step = 1 / 100,
                          sep = ""
                        )
                      ),
                      shiny::column(3, shiny::uiOutput("topRules_scatter"))
                    )
                  ),
                  plotly::plotlyOutput("scatterPlot",
                    width = "100%", height =
                      graphHeight
                  )
                ),
                shiny::tabPanel(
                  "Matrix",
                  value = "matrix",
                  shiny::wellPanel(shiny::fluidRow(
                    shiny::column(6, shiny::uiOutput("cAxisSelectInput_matrix")),
                    shiny::column(6, shiny::uiOutput("topRules_matrix"))
                  )),
                  plotly::plotlyOutput("matrixPlot",
                    width = "100%", height =
                      graphHeight
                  )
                ),
                shiny::tabPanel(
                  "Grouped Matrix",
                  value = "grouped",
                  shiny::wellPanel(shiny::fluidRow(
                    shiny::column(6, shiny::uiOutput("cAxisSelectInput_grouped")),
                    shiny::column(6, shiny::uiOutput("kSelectInput"))
                  )),
                  shiny::plotOutput("groupedPlot",
                    width = "100%", height =
                      graphHeight
                  )
                ),
                shiny::tabPanel(
                  "Graph",
                  value = "graph",
                  shiny::wellPanel(shiny::fluidRow(
                    shiny::column(6, shiny::uiOutput("cAxisSelectInput_graph")),
                    shiny::column(6, shiny::uiOutput("topRules_graph"))
                  )),
                  visNetwork::visNetworkOutput("graphPlot",
                    width = "100%", height =
                      graphHeight
                  )
                ),
                shiny::tabPanel(
                  "Export",
                  value = "export",
                  shiny::br(),
                  shiny::downloadButton("rules.csv", "Export rules (CSV)")
                )
              ),
              width = 12 - sidebarWidth
            )
          )
        )
      ),
      server = function(input, output, session) {
        output$numRulesOutput <- shiny::renderUI({
          if (is(x, "rules")) {
            shiny::em(shiny::HTML(paste(
              "Selected rules: ", length(rules()),
              " of ", length(x)
            )))
          } else {
            shiny::em(shiny::HTML(paste("Rules: ", length(rules()))))
          }
        })

        output$kSelectInput <- shiny::renderUI({
          shiny::sliderInput(
            "k",
            label = "Choose # of rule clusters",
            min = 1,
            max = 50,
            step = 1,
            value = 15
          )
        })

        output$xAxisSelectInput <- shiny::renderUI({
          shiny::selectInput("xAxis", "X Axis:", colnames(quality(rules())),
            selected =
              xIndexCached
          )
        })

        output$yAxisSelectInput <- shiny::renderUI({
          shiny::selectInput("yAxis", "Y Axis:", colnames(quality(rules())),
            selected =
              yIndexCached
          )
        })

        output$cAxisSelectInput <- shiny::renderUI({
          shiny::selectInput("cAxis", "Shading:", colnames(quality(rules())),
            selected =
              zIndexCached
          )
        })

        output$cAxisSelectInput_matrix <- shiny::renderUI({
          shiny::selectInput("cAxis_matrix",
            "Shading:",
            colnames(quality(rules())),
            selected = zIndexCached
          )
        })

        output$cAxisSelectInput_grouped <- shiny::renderUI({
          shiny::selectInput("cAxis_grouped",
            "Shading:",
            colnames(quality(rules())),
            selected = zIndexCached
          )
        })

        output$cAxisSelectInput_graph <- shiny::renderUI({
          shiny::selectInput("cAxis_graph",
            "Shading:",
            colnames(quality(rules())),
            selected = zIndexCached
          )
        })

        output$topRules_matrix <- shiny::renderUI({
          shiny::sliderInput(
            "topRules_matrix",
            "Top rules shown (keep below 500):",
            min = 1,
            max = length(rules()),
            value = min(100, length(rules())),
            step = 1,
            sep = ""
          )
        })

        output$topRules_scatter <- shiny::renderUI({
          shiny::sliderInput(
            "topRules_scatter",
            "Top rules shown (keep below 500):",
            min = 1,
            max = length(rules()),
            value = min(100, length(rules())),
            step = 1,
            sep = ""
          )
        })

        output$topRules_graph <- shiny::renderUI({
          shiny::sliderInput(
            "topRules_graph",
            "Top rules shown (keep below 500):",
            min = 1,
            max = length(rules()),
            value = min(100, length(rules())),
            step = 1,
            sep = ""
          )
        })

        output$choose_columns <- shiny::renderUI({
          shiny::selectizeInput("cols", NULL, itemLabels, multiple = TRUE)
        })

        output$choose_lhs <- shiny::renderUI({
          shiny::selectizeInput("colsLHS", NULL, itemLabels, multiple = TRUE)
        })

        output$choose_rhs <- shiny::renderUI({
          shiny::selectizeInput("colsRHS", NULL, itemLabels, multiple = TRUE)
        })

        ## caching data
        cachedRules <- NULL
        cachedSupp <- supp
        cachedConf <- conf
        cachedLift <- lift
        cachedMinL <- minLift
        cachedMaxL <- maxLift

        if (is(x, "rules")) {
          cachedRules <- x
          cachedSupp <<- info(x)$support
          cachedConf <<- info(x)$confidence
          cachedLift <<- min(quality(x)$lift)
          cachedMinL <<- min(size(x))
          cachedMaxL <<- max(size(x))
        }

        # re-mine rules if necessary dataset is transactions!
        remineRules <- shiny::reactive({
          # use a minimum of 1 absolute support!
          supp <- input$supp
          if (supp == 0) {
            supp <- 1 / length(x)
          }

          message("Remining rules...")

          rules <- apriori(
            x,
            parameter = list(
              support = as.numeric(supp),
              confidence = as.numeric(input$conf),
              minlen = input$length[1],
              maxlen = input$length[2]
            ),
            control = list(verbose = FALSE)
          )
          quality(rules) <- interestMeasure(rules, transactions = x)

          message("Remined ", length(rules), " rules.")

          cachedRules <<- rules
          cachedSupp <<- input$supp
          cachedConf <<- input$conf
          cachedLift <<- input$lift
          cachedMinL <<- input$length[1]
          cachedMaxL <<- input$length[2]
        })

        # handle warning for too low support
        override <- shiny::reactiveVal(FALSE)

        shiny::observeEvent(input$cancel, {
          shiny::removeModal()
          # reset the slider (Note this does not change input$supp!)
          shiny::updateSliderInput(session, "supp", value = cachedSupp)
        })

        shiny::observeEvent(input$continue, {
          shiny::removeModal()
          override(TRUE)
        })

        rules <- shiny::reactive({
          # recalculate rules?

          if (is(x, "transactions")) {
            # check for low minimum support first
            if (input$supp * length(x) > 10 || override()) {
              if (is.null(cachedRules)) {
                remineRules()
              }
              if ((input$supp < cachedSupp) ||
                input$conf < cachedConf) {
                remineRules()
              }
              if (input$length[1] < cachedMinL ||
                input$length[1] > cachedMaxL) {
                remineRules()
              }
            } else {
              shiny::showModal(
                shiny::modalDialog(
                  title = "Warning",
                  "Very low minimum support! Too low values can result in long wait times and memory issues.",
                  footer = shiny::tagList(
                    shiny::actionButton("cancel", "cancel"),
                    shiny::actionButton("continue", "proceed")
                  )
                )
              )
            }
          }

          ar <- cachedRules

          # filter rules
          if (input$supp > cachedSupp) {
            ar <- subset(ar, subset = support > input$supp)
          }

          if (input$conf > cachedConf) {
            ar <- subset(ar, subset = quality(ar)$confidence > input$conf)
          }

          if (input$lift > cachedLift) {
            ar <- subset(ar, subset = lift > input$lift)
          }

          if (input$length[1] > cachedMinL) {
            ar <- ar[size(ar) >= input$length[1]]
          }

          if (input$length[2] < cachedMaxL) {
            ar <- ar[size(ar) <= input$length[2]]
          }

          if (input$colsType == "rem" && length(input$cols) > 0) {
            ar <- subset(ar, subset = !(items %in% input$cols))
          }

          if (input$colsType == "req" && length(input$cols) > 0) {
            ar <- subset(ar, subset = items %in% input$cols)
          }

          if (input$colsLHSType == "rem" &&
            length(input$colsLHS) > 0) {
            ar <- subset(ar, subset = !(lhs %in% input$colsLHS))
          }

          if (input$colsLHSType == "req" &&
            length(input$colsLHS) > 0) {
            ar <- subset(ar, subset = lhs %in% input$colsLHS)
          }

          if (input$colsRHSType == "rem" &&
            length(input$colsRHS) > 0) {
            ar <- subset(ar, subset = !(rhs %in% input$colsRHS))
          }

          if (input$colsRHSType == "req" &&
            length(input$colsRHS) > 0) {
            ar <- subset(ar, subset = rhs %in% input$colsRHS)
          }

          shiny::validate()

          ar
        })

        # remember settings for other plots
        shiny::observe({
          shiny::req(input$xAxis)
          xIndexCached <<- input$xAxis
        })
        shiny::observe({
          shiny::req(input$yAxis)
          yIndexCached <<- input$yAxis
        })
        shiny::observe({
          shiny::req(input$cAxis)
          zIndexCached <<- input$cAxis
        })
        shiny::observe({
          shiny::req(input$cAxis_matrix)
          zIndexCached <<- input$cAxis_matrix
        })
        shiny::observe({
          shiny::req(input$cAxis_grouped)
          zIndexCached <<- input$cAxis_grouped
        })
        shiny::observe({
          shiny::req(input$cAxis_graph)
          zIndexCached <<- input$cAxis_graph
        })

        # Present errors nicely to the user
        handleErrors <- shiny::reactive({
          shiny::validate(
            shiny::need(
              length(rules()) > 0,
              "No rules to visualize! Decrease support, confidence or lift."
            )
          )
        })

        ## Data Table ##########################
        output$rulesDataTable <- DT::renderDT({
          handleErrors()
          inspectDT(rules())
        })

        ## Scatter Plot ##########################
        output$scatterPlot <- plotly::renderPlotly({
          shiny::req(
            input$xAxis,
            input$yAxis,
            input$cAxis,
            input$topRules_scatter,
            input$jitter_scatter
          )
          handleErrors()
          suppressWarnings(
            plot(
              rules(),
              method = "scatterplot",
              measure = c(input$xAxis, input$yAxis),
              shading = input$cAxis,
              engine = "htmlwidget",
              control = list(
                max = input$topRules_scatter,
                jitter = input$jitter_scatter
              )
            )
          )
        })

        ## Matrix Plot ###################
        output$matrixPlot <- plotly::renderPlotly({
          shiny::req(input$cAxis_matrix, input$topRules_matrix)
          handleErrors()
          suppressWarnings(
            plot(
              rules(),
              method = "matrix",
              shading = input$cAxis_matrix,
              engine = "htmlwidget",
              control = list(max = input$topRules_matrix)
            )
          )
        })

        ## Grouped Matrix Plot ##########

        ### FIXME: htmlWidget does not render

        # output$groupedPlot <- plotly::renderPlotly({
        #   shiny::req(input$cAxis_grouped, input$k)
        #   handleErrors()
        #
        #   plot(rules(), method='grouped', shading = input$cAxis_grouped, engine = 'htmlwidget',
        #     control=list(k=input$k))
        # })

        output$groupedPlot <- shiny::renderPlot({
          shiny::req(input$cAxis_grouped, input$k)
          handleErrors()

          plot(
            rules(),
            method = "grouped",
            shading = input$cAxis_grouped,
            engine = "ggplot2",
            control = list(k = input$k)
          ) + theme(text = element_text(size = 14))
        })



        ## Graph Plot ##########################
        output$graphPlot <- visNetwork::renderVisNetwork({
          shiny::req(input$cAxis_graph, input$topRules_graph)
          handleErrors()

          suppressWarnings(
            plt <- plot(
              rules(),
              method = "graph",
              shading = input$cAxis_graph,
              engine = "htmlwidget",
              control = list(max = input$topRules_graph)
            )
          )
          # plt$sizingPolicy <- htmlwidgets::sizingPolicy(
          #   viewer.paneHeight = 1000,
          #   browser.defaultHeight = 1000,
          #   knitr.defaultHeight = 1000,
          #   defaultHeight = 1000,
          #   defaultWidth = 1000,
          #   browser.fill = TRUE
          # )
          # plt$height <- 1000
          # plt$x$height <- 1000
          plt
        })

        ## Export ########################
        output$rules.csv <- shiny::downloadHandler(
          filename = "rules.csv",
          content = function(file) {
            utils::write.csv(as(rules(), "data.frame"), file)
          }
        )
      }
    )
  }

Try the arulesViz package in your browser

Any scripts or data that you put into this service are public.

arulesViz documentation built on May 29, 2024, 4:37 a.m.