Nothing
#' @title Autocorrelation Plot in D3 with r2d3 package.
#'
#' @description Plot of i-th residual vs i+1-th residual.
#'
#' @param object An object of class 'auditor_model_residual' created with \code{\link{model_residual}} function.
#' @param ... Other 'auditor_model_residual' objects to be plotted together.
#' @param variable Name of variable to order residuals on a plot.
#' If \code{variable="_y_"}, the data is ordered by a vector of actual response (\code{y} parameter
#' passed to the \code{\link[DALEX]{explain}} function).
#' @param points Logical, indicates whenever observations should be added as points. By default it's TRUE.
#' @param smooth Logical, indicates whenever smoothed lines should be added. By default it's FALSE.
#' @param point_count Number of points to be plotted per model. Points will be chosen randomly.
#' By default plot all of them.
#' @param single_plot Logical, indicates whenever single or facets should be plotted. By default it's TRUE.
#' @param scale_plot Logical, indicates whenever the plot should scale with height. By default it's FALSE.
#' @param background Logical, available only if single_plot = FALSE. Indicates whenever background plots should be plotted.
#' By default it's FALSE.
#'
#' @return a \code{r2d3} object
#'
#' @examples
#'
#' dragons <- DALEX::dragons[1:100, ]
#'
#' # fit a model
#' model_lm <- lm(life_length ~ ., data = dragons)
#'
#' lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
#'
#' # validate a model with auditor
#' mr_lm <- model_residual(lm_audit)
#'
#' # plot results
#' plotD3_autocorrelation(mr_lm)
#' plotD3_autocorrelation(mr_lm, smooth = TRUE)
#'
#' @export
#' @rdname plotD3_autocorrelation
plotD3_autocorrelation <- function(object, ..., variable = NULL, points = TRUE, smooth = FALSE,
point_count = NULL, single_plot = TRUE, scale_plot = FALSE,
background = FALSE) {
if (points == FALSE & smooth == FALSE) stop("Plot points or smooth.")
n <- length(list(...)) + 1
check_object(object, type = "res")
df_temp <- make_dataframe(object, ..., variable = variable, type = "res")
df <- data.frame(x_val = numeric(), y_val = numeric(), label = character())
for (label in levels(df_temp$`_label_`)) {
ord_res <- df_temp[which(df_temp$`_label_` == label), "_residuals_"]
df <- rbind(df, data.frame(x = ord_res[-length(ord_res)],
y = ord_res[-1],
label = label))
}
chart_title <- "Autocorrelation"
x_title <- "Residual i"
y_title <- "Residual i+1"
if (is.null(variable)) {
chart_title <- "Autocorrelation of unordered residuals"
} else if (variable == "_y_") {
chart_title <- "Autocorrelation of residuals ordered by predicted values"
} else if (variable == "_y_hat_") {
chart_title <- "Autocorrelation of residuals ordered by model response"
} else {
chart_title <- paste0("Autocorrelation of residuals ordered by ",variable)
}
mrl <- split(df, f = df$label)
model_names <- unlist(lapply(mrl, function(x) unique(x$label)))
x_min <- x_max <- y_min <- y_max <- NULL
point_data <- smooth_data <- NA
# prepare points data
if (points == TRUE) {
# find instance count and adjust point_count
m <- dim(mrl[[1]])[1]
if (is.null(point_count) || point_count > m) {
point_data <- mrl
} else {
point_data <- lapply(mrl, function(mr) {
mr <- mr[sample(m,point_count),]
mr
})
}
names(point_data) <- model_names
}
# prepare smooth data
if (smooth == TRUE) {
smooth_data <- lapply(mrl, function(mr) {
model <- mgcv::gam(y ~ s(x, bs = "cs"), data = mr)
vec <- data.frame(x = seq(min(mr$x), max(mr$x), length.out = 100))
p <- predict(model, vec)
df <- data.frame(val = vec$x, smooth = as.numeric(p))
dim(df$val) <- NULL
df
})
names(smooth_data) <- model_names
}
xmax <- max(sapply(mrl, function(x) max(x$x, x$y)))
xmin <- min(sapply(mrl, function(x) min(x$x, x$y)))
ymax <- ifelse(all(is.na(smooth_data)), xmax,
max(sapply(smooth_data, function(x) max(x$smooth)), xmax))
ymin <- ifelse(all(is.na(smooth_data)), xmin,
min(sapply(smooth_data, function(x) min(x$smooth)), xmin))
temp <- jsonlite::toJSON(list(point_data, smooth_data))
options <- list(xmax = xmax, xmin = xmin,
ymax = ymax, ymin = ymin,
xTitle = x_title, n = n,
points = points, smooth = smooth,
scalePlot = scale_plot, yTitle = y_title,
chartTitle = chart_title)
if (single_plot == TRUE) {
r2d3::r2d3(data = temp, script = system.file("d3js/plotAutocorrelationSingle.js", package = "auditor"),
dependencies = list(
system.file("d3js/colorsDrWhy.js", package = "auditor"),
system.file("d3js/hackHead.js", package = "auditor")
),
css = system.file("d3js/themeDrWhy.css", package = "auditor"),
d3_version = 4,
options = options)
} else {
if (n==1) stop("Use single_plot instead.")
options['background'] <- background
r2d3::r2d3(data = temp, script = system.file("d3js/plotAutocorrelationMany.js", package = "auditor"),
dependencies = list(
system.file("d3js/colorsDrWhy.js", package = "auditor"),
system.file("d3js/hackHead.js", package = "auditor")
),
css = system.file("d3js/themeDrWhy.css", package = "auditor"),
d3_version = 4,
options = options)
}
}
#' @rdname plotD3_autocorrelation
#' @export
plotD3Autocorrelation <- function(object, ..., variable = NULL, points = TRUE, smooth = FALSE,
point_count = NULL, single_plot = TRUE, scale_plot = FALSE,
background = FALSE) {
warning("Please note that 'plotD3Autocorrelation()' is now deprecated, it is better to use 'plotD3_autocorrelation()' instead.")
plotD3_autocorrelation(object, ..., variable, points, smooth,
point_count, single_plot, scale_plot,
background)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.