Nothing
#' Modified from: "https://github.com/rstudio/keras/blob/master/vignettes/
#' examples/cifar10_cnn.R"
#'
#' Train a simple deep CNN on the CIFAR10 small images dataset.
#'
#' It gets down to 0.65 test logloss in 25 epochs, and down to 0.55 after 50
#' epochs, though it is still underfitting at that point.
library(keras)
library(azuremlsdk)
# Parameters --------------------------------------------------------------
args <- commandArgs(trailingOnly = TRUE)
batch_size <- as.numeric(args[2])
log_metric_to_run("batch_size", batch_size)
epochs <- as.numeric(args[4])
log_metric_to_run("epochs", epochs)
lr <- as.numeric(args[6])
log_metric_to_run("lr", lr)
decay <- as.numeric(args[8])
log_metric_to_run("decay", decay)
data_augmentation <- TRUE
# Data Preparation --------------------------------------------------------
# See ?dataset_cifar10 for more info
cifar10 <- dataset_cifar10()
# Feature scale RGB values in test and train inputs
x_train <- cifar10$train$x/255
x_test <- cifar10$test$x/255
y_train <- to_categorical(cifar10$train$y, num_classes = 10)
y_test <- to_categorical(cifar10$test$y, num_classes = 10)
# Defining Model ----------------------------------------------------------
# Initialize sequential model
model <- keras_model_sequential()
model %>%
# Start with hidden 2D convolutional layer being fed 32x32 pixel images
layer_conv_2d(
filter = 32, kernel_size = c(3,3), padding = "same",
input_shape = c(32, 32, 3)
) %>%
layer_activation("relu") %>%
# Second hidden layer
layer_conv_2d(filter = 32, kernel_size = c(3, 3)) %>%
layer_activation("relu") %>%
# Use max pooling
layer_max_pooling_2d(pool_size = c(2, 2)) %>%
layer_dropout(0.25) %>%
# 2 additional hidden 2D convolutional layers
layer_conv_2d(filter = 32, kernel_size = c(3, 3), padding = "same") %>%
layer_activation("relu") %>%
layer_conv_2d(filter = 32, kernel_size = c(3, 3)) %>%
layer_activation("relu") %>%
# Use max pooling once more
layer_max_pooling_2d(pool_size = c(2, 2)) %>%
layer_dropout(0.25) %>%
# Flatten max filtered output into feature vector
# and feed into dense layer
layer_flatten() %>%
layer_dense(512) %>%
layer_activation("relu") %>%
layer_dropout(0.5) %>%
# Outputs from dense layer are projected onto 10 unit output layer
layer_dense(10) %>%
layer_activation("softmax")
opt <- optimizer_rmsprop(lr, decay)
model %>%
compile(loss = "categorical_crossentropy",
optimizer = opt,
metrics = "accuracy"
)
# Training ----------------------------------------------------------------
if (!data_augmentation){
model %>%
fit(x_train,
y_train,
batch_size = batch_size,
epochs = epochs,
validation_data = list(x_test, y_test),
shuffle = TRUE
)
} else {
datagen <- image_data_generator(rotation_range = 20,
width_shift_range = 0.2,
height_shift_range = 0.2,
horizontal_flip = TRUE
)
datagen %>% fit_image_data_generator(x_train)
results <- evaluate(model, x_train, y_train, batch_size)
log_metric_to_run("Loss", results[[1]])
cat("Loss: ", results[[1]], "\n")
cat("Accuracy: ", results[[2]], "\n")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.