Nothing
## HAS_TESTS
#' Create New Data Model for Exposures
#'
#' @param disp Dispersion. Numeric vector
#' @param disp_levels Levels of 'by' variables for
#' which there are potentially distinct values of 'disp'.
#' A character vector.
#' @param disp_matrix_outcome Sparse matrix mapping
#' disp to outcome
#' @param cv_arg The original 'cv' argument
#' passed by the user (converted to a
#' data frame if original a number.)
#' @param nms_by Names of by variables for disp
#'
#' @returns Object of class 'bage_datamod_exposure'
#'
#' @noRd
new_bage_datamod_exposure <- function(disp,
disp_levels,
disp_matrix_outcome,
cv_arg,
nms_by) {
ans <- list(disp = disp,
disp_levels = disp_levels,
disp_matrix_outcome = disp_matrix_outcome,
cv_arg = cv_arg,
nms_by = nms_by)
class(ans) <- c("bage_datamod_exposure",
"bage_datamod_offset",
"bage_datamod")
ans
}
## HAS_TESTS
#' Create New Miscount Data Model for Outcomes
#'
#' @param prob_mean,prob_disp Parameters
#' for beta prior for 'prob'. Numeric vectors
#' @param prob_levels Levels of 'by' variables for
#' which there are potentially distinct values
#' of 'prob_mean' and 'prob_disp'.
#' A character vector.
#' @param prob_matrix_outcome Sparse matrix mapping
#' prob to outcome
#' @param prob_arg The original
#' 'prob' argument
#' passed by the user.
#' @param rate_mean,rate_disp Parameters for
#' gamma prior for 'rate'. Numeric vector.
#' @param rate_levels Levels of 'by' variables for
#' which there are potentially distinct values
#' of 'rate_mean' and 'rate_disp'.
#' A character vector.
#' @param rate_matrix_outcome Sparse matrix mapping
#' rate to outcome
#' @param rate_arg The original
#' 'rate' argument
#' passed by the user.
#' @param nms_by Names of by variables for prob, rate
#'
#' @returns Object of class 'bage_datamod_miscount'
#'
#' @noRd
new_bage_datamod_miscount <- function(prob_mean,
prob_disp,
prob_levels,
prob_matrix_outcome,
prob_arg,
rate_mean,
rate_disp,
rate_levels,
rate_matrix_outcome,
rate_arg,
nms_by) {
ans <- list(prob_mean = prob_mean,
prob_disp = prob_disp,
prob_levels = prob_levels,
prob_matrix_outcome = prob_matrix_outcome,
prob_arg = prob_arg,
rate_mean = rate_mean,
rate_disp = rate_disp,
rate_levels = rate_levels,
rate_matrix_outcome = rate_matrix_outcome,
rate_arg = rate_arg,
nms_by = nms_by)
class(ans) <- c("bage_datamod_miscount",
"bage_datamod_outcome",
"bage_datamod")
ans
}
## HAS_TESTS
#' Create New Random Error Data Model for Outcomes
#'
#' @param sd_sd Standard devation of errors Numeric vector
#' @param sd_levels Levels of 'by' variables for
#' which there are potentially distinct values
#' of 'sd_sd'. A character vector.
#' @param sd_matrix_outcome Sparse matrix mapping
#' sd to outcome
#' @param sd_arg The original 'sd' argument
#' passed by the user (converted to a
#' data frame if original a number.)
#' @param nms_by Names of by variables for sd
#' @param outcome_sd Standard deviation of
#' the original, unscaled outcome
#'
#' @returns Object of class 'bage_datamod_noise'
#'
#' @noRd
new_bage_datamod_noise <- function(sd_sd,
sd_levels,
sd_matrix_outcome,
sd_arg,
nms_by,
outcome_sd) {
ans <- list(sd_sd = sd_sd,
sd_levels = sd_levels,
sd_matrix_outcome = sd_matrix_outcome,
sd_arg = sd_arg,
nms_by = nms_by,
outcome_sd = outcome_sd)
class(ans) <- c("bage_datamod_noise",
"bage_datamod_outcome",
"bage_datamod")
ans
}
## HAS_TESTS
#' Create New Overcount Data Model for Outcomes
#'
#' @param rate_mean,rate_disp Parameters for
#' gamma prior for 'rate'. Numeric vectors
#' @param rate_levels Levels of 'by' variables for
#' which there are potentially distinct values
#' of 'rate_mean', and 'rate_disp'. A character vector.
#' @param rate_matrix_outcome Sparse matrix mapping
#' rate to outcome
#' @param rate_arg The original 'rate' argument
#' passed by the user.
#' @param nms_by Names of by variables for rate
#'
#' @returns Object of class 'bage_datamod_over'
#'
#' @noRd
new_bage_datamod_overcount <- function(rate_mean,
rate_disp,
rate_levels,
rate_matrix_outcome,
rate_arg,
nms_by) {
ans <- list(rate_mean = rate_mean,
rate_disp = rate_disp,
rate_levels = rate_levels,
rate_matrix_outcome = rate_matrix_outcome,
rate_arg = rate_arg,
nms_by = nms_by)
class(ans) <- c("bage_datamod_overcount",
"bage_datamod_outcome",
"bage_datamod")
ans
}
## HAS_TESTS
#' Create New Undercount Data Model for Outcomes
#'
#' @param prob_mean, prob_disp Parameters
#' for beta prior for 'prob'
#' @param prob_levels Levels of 'by' variables for
#' which there are potentially distinct values
#' of 'prob_mean', and 'prob_disp'. A character vector.
#' @param prob_matrix_outcome Sparse matrix mapping
#' prob to outcome
#' @param prob_arg The original 'prob' argument
#' passed by the user.
#' @param nms_by Names of by variables for prob
#'
#' @returns Object of class 'bage_datamod_undercount'
#'
#' @noRd
new_bage_datamod_undercount <- function(prob_mean,
prob_disp,
prob_levels,
prob_matrix_outcome,
prob_arg,
nms_by) {
ans <- list(prob_mean = prob_mean,
prob_disp = prob_disp,
prob_levels = prob_levels,
prob_matrix_outcome = prob_matrix_outcome,
prob_arg = prob_arg,
nms_by = nms_by)
class(ans) <- c("bage_datamod_undercount",
"bage_datamod_outcome",
"bage_datamod")
ans
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.