Nothing
test_that('check CART opt', {
skip_if_not_installed("modeldata")
mod_1 <-
bagger(
Sepal.Width ~ .,
data = iris,
base_model = "CART",
control = control_bag(extract = get_method),
method = "anova"
)
mod_2 <-
bagger(
Sepal.Width ~ .,
data = iris,
base_model = "CART",
control = control_bag(extract = num_leaves),
maxdepth = 1
)
lmat <- matrix(c(0, 1, 2, 0), byrow = TRUE, nrow = 2)
mod_3 <-
bagger(
Class ~ .,
data = two_class_dat,
base_model = "CART",
control = control_bag(var_imp = TRUE, extract = get_loss),
parms = list(loss = lmat)
)
expect_true(all(unlist(mod_1$model_df$extras) == "anova"))
expect_true(all(unlist(mod_2$model_df$extras) == 2))
expect_true(all(map_lgl(mod_3$model_df$extras, ~ is.matrix(.x))))
expect_true(inherits(mod_3$imp, "tbl_df"))
expect_true(isTRUE(all(sort(mod_3$imp$term) == LETTERS[1:2])))
# Check for models with no importances
rm_imp <- function(x) {
x$fit$variable.importance <- NULL
x
}
one_missing <- mod_1$model_df
one_missing$model[[1]] <- rm_imp(one_missing$model[[1]])
expect_error(
one_missing_stats <-
baguette:::compute_imp(one_missing, baguette:::cart_imp, compute = TRUE),
regex = NA
)
expect_true(all(one_missing_stats$used <= 10))
all_missing <- mod_1$model_df
all_missing$model <- purrr::map(one_missing$model, rm_imp)
expect_error(
all_missing_stats <-
baguette:::compute_imp(all_missing, baguette:::cart_imp, compute = TRUE),
regex = NA
)
expect_true(nrow(all_missing_stats) == 0)
})
# ------------------------------------------------------------------------------
test_that('check model reduction', {
set.seed(36323)
reduced <-
bagger(
Species ~ .,
data = iris,
base_model = "CART",
times = 3
)
expect_true(length(reduced$model_df$model[[1]]$fit$y) == 0)
expect_true(length(reduced$model_df$model[[1]]$fit$control) == 2)
expect_equal(reduced$model_df$model[[1]]$fit$call, rlang::call2("dummy_call"))
expect_identical(attr(reduced$model_df$model[[1]]$fit$terms, ".Environment"), rlang::base_env())
set.seed(36323)
full <-
bagger(
Species ~ .,
data = iris,
base_model = "CART",
times = 3,
control = control_bag(reduce = FALSE)
)
expect_true(length(full$model_df$model[[1]]$fit$y) > 0)
expect_true(length(full$model_df$model[[1]]$fit$control) > 1)
expect_true(is.call(full$model_df$model[[1]]$fit$call))
expect_false(
isTRUE(
all.equal(attr(full$model_df$model[[1]]$fit$terms, ".Environment"),
rlang::base_env()
)
)
)
})
# ------------------------------------------------------------------------------
test_that('check CART parsnip interface', {
skip_if_not_installed("modeldata")
set.seed(4779)
expect_error(
reg_mod <- bag_tree(cost_complexity = .001, min_n = 3) %>%
set_engine("rpart", times = 3) %>%
set_mode("regression") %>%
fit(mpg ~ ., data = mtcars),
regexp = NA
)
expect_true(
all(purrr::map_lgl(reg_mod$fit$model_df$model, ~ inherits(.x, "model_fit")))
)
expect_true(
all(purrr::map_lgl(reg_mod$fit$model_df$model, ~ inherits(.x$fit, "rpart")))
)
expect_error(
reg_mod_pred <- predict(reg_mod, mtcars[1:5, -1]),
regexp = NA
)
expect_true(tibble::is_tibble(reg_mod_pred))
expect_equal(nrow(reg_mod_pred), 5)
expect_equal(names(reg_mod_pred), ".pred")
set.seed(4779)
expect_error(
class_cost <- bag_tree(min_n = 3, class_cost = 2) %>%
set_engine("rpart", times = 3) %>%
set_mode("classification") %>%
fit(Class ~ ., data = two_class_dat),
regexp = NA
)
expect_true(
all(purrr::map_lgl(class_cost$fit$model_df$model, ~ inherits(.x, "model_fit")))
)
expect_true(
all(purrr::map_lgl(class_cost$fit$model_df$model, ~ inherits(.x$fit, "rpart")))
)
expect_error(
class_cost_pred <- predict(class_cost, two_class_dat[1:5, -3]),
regexp = NA
)
expect_true(tibble::is_tibble(class_cost_pred))
expect_equal(nrow(class_cost_pred), 5)
expect_equal(names(class_cost_pred), ".pred_class")
expect_error(
class_cost_prob <- predict(class_cost, two_class_dat[1:5, -3], type = "prob"),
regexp = NA
)
expect_true(tibble::is_tibble(class_cost_prob))
expect_equal(nrow(class_cost_prob), 5)
expect_equal(names(class_cost_prob), c(".pred_Class1", ".pred_Class2"))
# ----------------------------------------------------------------------------
set.seed(4779)
expect_error(
class_mod <- bag_tree(cost_complexity = .001, min_n = 3) %>%
set_engine("rpart", times = 3) %>%
set_mode("classification") %>%
fit(Class ~ ., data = two_class_dat),
regexp = NA
)
expect_true(
all(purrr::map_lgl(class_mod$fit$model_df$model, ~ inherits(.x, "model_fit")))
)
expect_true(
all(purrr::map_lgl(class_mod$fit$model_df$model, ~ inherits(.x$fit, "rpart")))
)
expect_error(
class_mod_pred <- predict(class_mod, two_class_dat[1:5, -3]),
regexp = NA
)
expect_true(tibble::is_tibble(class_mod_pred))
expect_equal(nrow(class_mod_pred), 5)
expect_equal(names(class_mod_pred), ".pred_class")
expect_error(
class_mod_prob <- predict(class_mod, two_class_dat[1:5, -3], type = "prob"),
regexp = NA
)
expect_true(tibble::is_tibble(class_mod_prob))
expect_equal(nrow(class_mod_prob), 5)
expect_equal(names(class_mod_prob), c(".pred_Class1", ".pred_Class2"))
})
test_that('mode specific package dependencies', {
expect_identical(
get_from_env(paste0("bag_tree", "_pkgs")) %>%
dplyr::filter(engine == "rpart", mode == "classification") %>%
dplyr::pull(pkg),
list(c("rpart", "baguette"))
)
expect_identical(
get_from_env(paste0("bag_tree", "_pkgs")) %>%
dplyr::filter(engine == "rpart", mode == "regression") %>%
dplyr::pull(pkg),
list(c("rpart", "baguette"))
)
})
test_that('case weights', {
skip_if_not_installed("modeldata")
data("two_class_dat", package = "modeldata")
set.seed(1)
wts <- runif(nrow(two_class_dat))
wts <- ifelse(wts < 1/5, 0, 1)
expect_error({
set.seed(1)
wts_fit <- bagger(Class ~ A + B, data = two_class_dat, weights = wts)
},
regexp = NA
)
set.seed(1)
fit <- bagger(Class ~ A + B, data = two_class_dat)
expect_true(!identical(wts_fit$imp, fit$imp))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.