bsroc | R Documentation |
This function plots the observed data in the ROC (Receiving Operating Charachteristics) space with the Bayesian SROC (Summary ROC) curve. The predictive curves are approximated using a parametric model.
bsroc(
m,
level = c(0.05, 0.5, 0.95),
title = "Bayesian SROC Curve",
fpr.x = seq(0.01, 0.95, 0.01),
partial.AUC = TRUE,
xlim.bsroc = c(0, 1),
ylim.bsroc = c(0, 1),
lower.auc = 0,
upper.auc = 0.95,
col.fill.points = "blue",
results.bauc = TRUE,
results.bsroc = FALSE,
plot.post.bauc = FALSE,
bins = 30,
scale.size.area = 10
)
m |
The object generated by metadiag. |
level |
Credibility levels of the predictive curve |
title |
Optional parameter for setting a title in the plot. |
fpr.x |
Grid of values where the conditionl distribution is calculated. |
partial.AUC |
Automatically calculate the AUC for the observed range of FPRs, default is TRUE. |
xlim.bsroc |
Graphical limits of the x-axis for the BSROC curve plot. |
ylim.bsroc |
Graphical limits of the y-axis for the BSROC curve plot. |
lower.auc |
Lower limit of the AUC. |
upper.auc |
Upper limit of the AUC. |
col.fill.points |
Color used to fill points, default is blue. |
results.bauc |
Print results of the Bayesian Area Under the Curve, default value is TRUE. |
results.bsroc |
Print results of the Bayesian SROC curve, default value is FALSE. |
plot.post.bauc |
The BSROC and the posterior of the BAUC are ploted in the same page, default is FALSE. |
bins |
Histograms' bins. |
scale.size.area |
Scale area for the ploted points, default = 10. |
Verde P. E. (2010). Meta-analysis of diagnostic test data: A bivariate Bayesian modeling approach. Statistics in Medicine. 29(30):3088-102. doi: 10.1002/sim.4055.
Verde P. E. (2018). bamdit: An R Package for Bayesian Meta-Analysis of Diagnostic Test Data. Journal of Statisticsl Software. Volume 86, issue 10, pages 1–32.
metadiag
.
## execute analysis
## Not run:
# Example: data from Glas et al. (2003).....................................
data(glas)
glas.t <- glas[glas$marker == "Telomerase", 1:4]
glas.m1 <- metadiag(glas.t, re = "normal", link = "logit")
bsroc(glas.m1)
bsroc(glas.m1, plot.post.bauc = TRUE)
# Example: data from Scheidler et al. (1997)
# In this example the range of the observed FPR is less than 20%.
# Calculating the BSROC curve makes no sense! You will get a warning message!
data(mri)
mri.m <- metadiag(mri)
bsroc(mri.m)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.