View source: R/plotcredibility.R
plotcredibility | R Documentation |
This function plots the observe data in the ROC (Receiving Operating Characteristics) space with the posterior credibility contours.
plotcredibility(
x,
parametric.smooth = TRUE,
level = c(0.5, 0.75, 0.95),
limits.x = c(0, 1),
limits.y = c(0, 1),
color.line = "red",
color.data.points = "blue",
title = paste("Posterior Credibility Contours (50%, 75% and 95%)"),
...
)
x |
The object generated by the metadiag function. |
parametric.smooth |
Indicates if the predictive curve is a parametric or non-parametric. |
level |
Credibility levels of the predictive curve. If parametric.smooth = FALSE, then the probability levels are estimated from the nonparametric surface. |
limits.x |
Numeric vector of length 2 specifying the x-axis limits. The default value is c(0, 1). |
limits.y |
Numeric vector of length 2 specifying the x-axis limits. The default value is c(0, 1). |
color.line |
Color of the predictive contour line. |
color.data.points |
Color of the data points. |
title |
Optional parameter for setting a title in the plot. |
... |
... |
metadiag
.
## Not run:
library(bamdit)
data("glas")
glas.t <- glas[glas$marker == "Telomerase", 1:4]
glas.m1 <- metadiag(glas.t, # Data frame
re = "normal", # Random effects distribution
re.model = "DS", # Random effects on D and S
link = "logit", # Link function
sd.Fisher.rho = 1.7, # Prior standard deviation of correlation
nr.burnin = 1000, # Iterations for burnin
nr.iterations = 10000, # Total iterations
nr.chains = 2, # Number of chains
r2jags = TRUE) # Use r2jags as interface to jags
plotcredibility(glas.m1, # Fitted model
level = c(0.5, 0.75, 0.95), # Credibility levels
parametric.smooth = TRUE) # Parametric curve
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.