View source: R/plot.metadiag.R
plot.metadiag | R Documentation |
This function plots the observe data in the ROC (Receiving Operating Charachteristics) space with the posterior predictive contours. The predictive curves are approximated using a non-parametric smoother or with a parametric model. For the parametric model the current implementation supports only a logistic link function. The marginal posterior predictive distributions are ploted outside the ROC space.
## S3 method for class 'metadiag'
plot(
x,
parametric.smooth = TRUE,
level = c(0.5, 0.75, 0.95),
limits.x = c(0, 1),
limits.y = c(0, 1),
kde2d.n = 25,
color.line = "red",
title = paste("Posterior Predictive Contours (50%, 75% and 95%)"),
marginals = TRUE,
bin.hist = 30,
color.hist = "lightblue",
S = 500,
color.pred.points = "lightblue",
color.data.points = "blue",
...
)
x |
The object generated by the metadiag function. |
parametric.smooth |
Indicates if the predictive curve is a parametric or non-parametric. |
level |
Credibility levels of the predictive curve. If parametric.smooth = FALSE, then the probability levels are estimated from the nonparametric surface. |
limits.x |
Numeric vector of length 2 specifying the x-axis limits. The default value is c(0, 1). |
limits.y |
Numeric vector of length 2 specifying the x-axis limits. The default value is c(0, 1). |
kde2d.n |
The number of grid points in each direction for the non-parametric density estimation. Can be scalar or a length-2 inter vector. |
color.line |
Color of the predictive contour line. |
title |
Optional parameter for setting a title in the plot. |
marginals |
Plot the posterior marginal predictive histograms. |
bin.hist |
Number of bins of the marginal histograms. |
color.hist |
Color of the histograms. |
S |
Number of predictive rates to be plotted. |
color.pred.points |
Color of the posterior predictive rates. |
color.data.points |
Color of the data points. |
... |
... |
metadiag
.
## Not run:
library(bamdit)
data("glas")
glas.t <- glas[glas$marker == "Telomerase", 1:4]
glas.m1 <- metadiag(glas.t, # Data frame
re = "normal", # Random effects distribution
re.model = "DS", # Random effects on D and S
link = "logit", # Link function
sd.Fisher.rho = 1.7, # Prior standard deviation of correlation
nr.burnin = 1000, # Iterations for burnin
nr.iterations = 10000, # Total iterations
nr.chains = 2, # Number of chains
r2jags = TRUE) # Use r2jags as interface to jags
plot(glas.m1, # Fitted model
level = c(0.5, 0.75, 0.95), # Credibility levels
parametric.smooth = TRUE) # Parametric curve
# Plot results: based on a non-parametric smoother of the posterior predictive rates .......
plot(glas.m1, # Fitted model
level = c(0.5, 0.75, 0.95), # Credibility levels
parametric.smooth = FALSE) # Non-parametric curve
# Using the pipe command in the package dplyr and changing some colors .......
library(dplyr)
glas.t %>%
metadiag(re = "normal", re.model ="SeSp") %>%
plot(parametric.smooth = FALSE,
S = 100,
color.data.points = "green",
color.pred.points = "blue",
color.line = "black")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.