R/bdpbinomial.R

Defines functions posterior_binomial

#' @title Bayesian Discount Prior: Binomial counts
#' @description \code{bdpbinomial} is used for estimating posterior samples from a
#'   binomial outcome where an informative prior is used. The prior weight
#'   is determined using a discount function. This code is modeled after
#'   the methodologies developed in Haddad et al. (2017).
#' @param y_t scalar. Number of events for the current treatment group.
#' @param N_t scalar. Sample size of the current treatment group.
#' @param y0_t scalar. Number of events for the historical treatment group.
#' @param N0_t scalar. Sample size of the historical treatment group.
#' @param y_c scalar. Number of events for the current control group.
#' @param N_c scalar. Sample size of the current control group.
#' @param y0_c scalar. Number of events for the historical control group.
#' @param N0_c scalar. Sample size of the historical control group.
#' @param discount_function character. Specify the discount function to use.
#'   Currently supports \code{weibull}, \code{scaledweibull}, and
#'   \code{identity}. The discount function \code{scaledweibull} scales
#'   the output of the Weibull CDF to have a max value of 1. The \code{identity}
#'   discount function uses the posterior probability directly as the discount
#'   weight. Default value is "\code{identity}".
#' @param alpha_max scalar. Maximum weight the discount function can apply.
#'   Default is 1. For a two-arm trial, users may specify a vector of two values
#'   where the first value is used to weight the historical treatment group and
#'   the second value is used to weight the historical control group.
#' @param fix_alpha logical. Fix alpha at alpha_max? Default value is FALSE.
#' @param weibull_shape scalar. Shape parameter of the Weibull discount function
#'   used to compute alpha, the weight parameter of the historical data. Default
#'   value is 3. For a two-arm trial, users may specify a vector of two values
#'   where the first value is used to estimate the weight of the historical
#'   treatment group and the second value is used to estimate the weight of the
#'   historical control group. Not used when \code{discount_function} = "identity".
#' @param weibull_scale scalar. Scale parameter of the Weibull discount function
#'   used to compute alpha, the weight parameter of the historical data. Default
#'   value is 0.135. For a two-arm trial, users may specify a vector of two values
#'   where the first value is used to estimate the weight of the historical
#'   treatment group and the second value is used to estimate the weight of the
#'   historical control group. Not used when \code{discount_function} = "identity".
#' @param number_mcmc scalar. Number of Monte Carlo simulations. Default is 10000.
#' @param a0 scalar. Prior value for the beta rate. Default is 1.
#' @param b0 scalar. Prior value for the beta rate. Default is 1.
#' @param method character. Analysis method with respect to estimation of the weight
#'   paramter alpha. Default method "\code{mc}" estimates alpha for each
#'   Monte Carlo iteration. Alternate value "\code{fixed}" estimates alpha once and
#'   holds it fixed throughout the analysis. See the the \code{bdpbinomial} vignette \cr
#'   \code{vignette("bdpbinomial-vignette", package="bayesDP")} for more details.
#' @param compare logical. Should a comparison object be included in the fit?
#'   For a one-arm analysis, the comparison object is simply the posterior
#'   chain of the treatment group parameter. For a two-arm analysis, the comparison
#'   object is the posterior chain of the treatment effect that compares treatment and
#'   control. If \code{compare=TRUE}, the comparison object is accessible in the
#'   \code{final} slot, else the \code{final} slot is \code{NULL}. Default is
#'   \code{TRUE}.
#' @details \code{bdpbinomial} uses a two-stage approach for determining the
#'   strength of historical data in estimation of a binomial count mean outcome.
#'   In the first stage, a \emph{discount function} is used that that defines
#'   the maximum strength of the historical data and discounts based on
#'   disagreement with the current data. Disagreement between current and
#'   historical data is determined by stochastically comparing the respective
#'   posterior distributions under noninformative priors. With binomial data,
#'   the comparison is the proability (\code{p}) that the current count is less
#'   than the historical count. The comparison metric \code{p} is then input
#'   into the Weibull discount function and the final strength of the historical
#'   data is returned (alpha).
#'
#'  In the second stage, posterior estimation is performed where the discount
#'  function parameter, \code{alpha}, is used incorporated in all posterior
#'  estimation procedures.
#'
#'  To carry out a single arm (OPC) analysis, data for the current treatment
#'  (\code{y_t} and \code{N_t}) and historical treatment (\code{y0_t} and
#'  \code{N0_t}) must be input. The results are then based on the posterior
#'  distribution of the current data augmented by the historical data.
#'
#'  To carry our a two-arm (RCT) analysis, data for the current treatment and
#'  at least one of current or historical control data must be input. The results
#'  are then based on the posterior distribution of the difference between
#'  current treatment and control, augmented by available historical data.
#'
#'   For more details, see the \code{bdpbinomial} vignette: \cr
#'   \code{vignette("bdpbinomial-vignette", package="bayesDP")}
#'
#' @return \code{bdpbinomial} returns an object of class "bdpbinomial". The
#'   functions \code{\link[=summary,bdpbinomial-method]{summary}} and
#'   \code{\link[=print,bdpbinomial-method]{print}} are used to obtain and
#'   print a summary of the results, including user inputs. The
#'   \code{\link[=plot,bdpbinomial-method]{plot}} function displays visual
#'   outputs as well.
#'
#' An object of class \code{bdpbinomial} is a list containing at least
#' the following components:
#'
#' \describe{
#'  \item{\code{posterior_treatment}}{
#'    list. Entries contain values related to the treatment group:}
#'    \itemize{
#'      \item{\code{alpha_discount}}{
#'        numeric. Alpha value, the weighting parameter of the historical data.}
#'      \item{\code{p_hat}}{
#'        numeric. The posterior probability of the stochastic comparison
#'        between the current and historical data.}
#'      \item{\code{posterior}}{
#'        vector. A vector of length \code{number_mcmc} containing
#'        posterior Monte Carlo samples of the event rate of the treatment
#'        group. If historical treatment data is present, the posterior
#'        incorporates the weighted historical data.}
#'      \item{\code{posterior_flat}}{
#'        vector. A vector of length \code{number_mcmc} containing
#'        Monte Carlo samples of the event rate of the current treatment group
#'        under a flat/non-informative prior, i.e., no incorporation of the
#'        historical data.}
#'      \item{\code{prior}}{
#'        vector. If historical treatment data is present, a vector of length
#'        \code{number_mcmc} containing Monte Carlo samples of the event rate
#'        of the historical treatment group under a flat/non-informative prior.}
#'   }
#'  \item{\code{posterior_control}}{
#'    list. Similar entries as \code{posterior_treament}. Only present if a
#'    control group is specified.}
#'
#'  \item{\code{final}}{
#'    list. Contains the final comparison object, dependent on the analysis type:}
#'    \itemize{
#'      \item{One-arm analysis:}{
#'        vector. Posterior chain of binomial proportion.}
#'      \item{Two-arm analysis:}{
#'        vector. Posterior chain of binomial proportion difference comparing
#'        treatment and control groups.}
#'   }
#'
#'  \item{\code{args1}}{
#'    list. Entries contain user inputs. In addition, the following elements
#'    are ouput:}
#'    \itemize{
#'      \item{\code{arm2}}{
#'        binary indicator. Used internally to indicate one-arm or two-arm
#'        analysis.}
#'      \item{\code{intent}}{
#'        character. Denotes current/historical status of treatment and
#'        control groups.}
#'   }
#' }
#'
#' @seealso \code{\link[=summary,bdpbinomial-method]{summary}},
#'   \code{\link[=print,bdpbinomial-method]{print}},
#'   and \code{\link[=plot,bdpbinomial-method]{plot}} for details of each of the
#'   supported methods.
#'
#' @references
#' Haddad, T., Himes, A., Thompson, L., Irony, T., Nair, R. MDIC Computer
#'   Modeling and Simulation working group.(2017) Incorporation of stochastic
#'   engineering models as prior information in Bayesian medical device trials.
#'   \emph{Journal of Biopharmaceutical Statistics}, 1-15.
#'
#' @examples
#' # One-arm trial (OPC) example
#' fit <- bdpbinomial(
#'   y_t = 10,
#'   N_t = 500,
#'   y0_t = 25,
#'   N0_t = 250,
#'   method = "fixed"
#' )
#' summary(fit)
#' print(fit)
#' \dontrun{
#' plot(fit)
#' }
#'
#' # Two-arm (RCT) example
#' fit2 <- bdpbinomial(
#'   y_t = 10,
#'   N_t = 500,
#'   y0_t = 25,
#'   N0_t = 250,
#'   y_c = 8,
#'   N_c = 500,
#'   y0_c = 20,
#'   N0_c = 250,
#'   method = "fixed"
#' )
#' summary(fit2)
#' print(fit2)
#' \dontrun{
#' plot(fit2)
#' }
#'
#' @rdname bdpbinomial
#' @import methods
#' @importFrom stats sd density is.empty.model median model.offset
#'   model.response pweibull quantile rbeta rgamma rnorm var vcov
#' @aliases bdpbinomial-method
#' @aliases bdpbinomial,ANY-method
#' @export bdpbinomial
bdpbinomial <- setClass("bdpbinomial",
                        slots = c(
                          posterior_test = "list",
                          posterior_control = "list",
                          final = "list",
                          args1 = "list"
                        )
)

setGeneric(
  "bdpbinomial",
  function(y_t = NULL,
           N_t = NULL,
           y0_t = NULL,
           N0_t = NULL,
           y_c = NULL,
           N_c = NULL,
           y0_c = NULL,
           N0_c = NULL,
           discount_function = "identity",
           alpha_max = 1,
           fix_alpha = FALSE,
           a0 = 1,
           b0 = 1,
           number_mcmc = 10000,
           weibull_scale = 0.135,
           weibull_shape = 3,
           method = "mc",
           compare = TRUE) {
    standardGeneric("bdpbinomial")
  }
)

setMethod(
  "bdpbinomial",
  signature(),
  function(y_t = NULL,
           N_t = NULL,
           y0_t = NULL,
           N0_t = NULL,
           y_c = NULL,
           N_c = NULL,
           y0_c = NULL,
           N0_c = NULL,
           discount_function = "identity",
           alpha_max = 1,
           fix_alpha = FALSE,
           a0 = 1,
           b0 = 1,
           number_mcmc = 10000,
           weibull_scale = 0.135,
           weibull_shape = 3,
           method = "mc",
           compare = TRUE) {


    ################################################################################
    # Check Input                                                                  #
    ################################################################################

    intent <- c()
    if (length(y_t + N_t) != 0) {
      intent <- c(intent, "current treatment")
      # cat('Current Treatment\n')
    } else {
      if (is.null(y_t) == TRUE) {
        cat("y_t missing\n")
      }
      if (is.null(N_t) == TRUE) {
        cat("N_t missing\n")
      }
      stop("Current treatment not provided/incomplete.")
    }

    if (length(y0_t + N0_t) != 0) {
      intent <- c(intent, "historical treatment")
      # cat('Historical Treatment\n')
    } else {
      if (length(c(y0_t, N0_t)) > 0) {
        if (is.null(y0_t) == TRUE) {
          cat("y0_t missing\n")
        }
        if (is.null(N0_t) == TRUE) {
          cat("N0_t missing\n")
        }
        stop("Historical treatment incomplete.")
      }
    }

    if (length(y_c + N_c) != 0) {
      intent <- c(intent, "current control")
      # cat('Current Control\n')
    } else {
      if (length(c(y_c, N_c)) > 0) {
        if (is.null(y_c) == TRUE) {
          cat("y_c missing\n")
        }
        if (is.null(N_c) == TRUE) {
          cat("N_c missing\n")
        }
        stop("Current control not provided/incomplete.")
      }
    }

    if (length(y0_c + N0_c) != 0) {
      intent <- c(intent, "historical control")
      # cat('Historical Control\n')
    } else {
      if (length(c(y0_c, N0_c)) > 0) {
        if (is.null(y0_c) == TRUE) {
          cat("y0_c missing\n")
        }
        if (is.null(N0_c) == TRUE) {
          cat("N0_c missing\n")
        }
        stop("Historical Control not provided/incomplete.")
      }
    }

    if (!is.null(N_c) | !is.null(N0_c)) {
      arm2 <- TRUE
    } else {
      arm2 <- FALSE
    }

    # Check that discount_function is input correctly
    all_functions <- c("weibull", "scaledweibull", "identity")
    function_match <- match(discount_function, all_functions)
    if (is.na(function_match)) {
      stop("discount_function input incorrectly.")
    }

    ##############################################################################
    # Quick check, if alpha_max, weibull_scale, or weibull_shape have length 1,
    # repeat input twice
    ##############################################################################

    if (length(alpha_max) == 1) {
      alpha_max <- rep(alpha_max, 2)
    }

    if (length(weibull_scale) == 1) {
      weibull_scale <- rep(weibull_scale, 2)
    }

    if (length(weibull_shape) == 1) {
      weibull_shape <- rep(weibull_shape, 2)
    }

    ##############################################################################
    # Run model and collect results
    ##############################################################################

    posterior_treatment <- posterior_binomial(
      y = y_t,
      N = N_t,
      y0 = y0_t,
      N0 = N0_t,
      discount_function = discount_function,
      alpha_max = alpha_max[1],
      fix_alpha = fix_alpha,
      a0 = a0,
      b0 = b0,
      number_mcmc = number_mcmc,
      weibull_scale = weibull_scale[1],
      weibull_shape = weibull_shape[1],
      method = method
    )

    if (arm2) {
      posterior_control <- posterior_binomial(
        y = y_c,
        N = N_c,
        y0 = y0_c,
        N0 = N0_c,
        discount_function = discount_function,
        alpha_max = alpha_max[2],
        fix_alpha = fix_alpha,
        a0 = a0,
        b0 = b0,
        number_mcmc = number_mcmc,
        weibull_scale = weibull_scale[2],
        weibull_shape = weibull_shape[2],
        method = method
      )
    } else {
      posterior_control <- NULL
    }

    args1 <- list(
      y_t = y_t,
      N_t = N_t,
      y0_t = y0_t,
      N0_t = N0_t,
      y_c = y_c,
      N_c = N_c,
      y0_c = y0_c,
      N0_c = N0_c,
      discount_function = discount_function,
      alpha_max = alpha_max,
      fix_alpha = fix_alpha,
      a0 = a0,
      b0 = b0,
      number_mcmc = number_mcmc,
      weibull_scale = weibull_scale,
      weibull_shape = weibull_shape,
      method = method,
      arm2 = arm2,
      intent = paste(intent,
                     collapse = ", ",
                     compare = compare
      )
    )

    ##############################################################################
    ### Create final (comparison) object
    ##############################################################################

    if (!compare) {
      final <- NULL
    } else {
      if (arm2) {
        final <- list()
        final$posterior <- posterior_treatment$posterior - posterior_control$posterior
      } else {
        final <- list()
        final$posterior <- posterior_treatment$posterior
      }
    }

    me <- list(
      posterior_treatment = posterior_treatment,
      posterior_control = posterior_control,
      final = final,
      args1 = args1
    )

    class(me) <- "bdpbinomial"

    return(me)
  }
)


################################################################################
# Binomial posterior estimation
# 1) Estimate the discount function (if current+historical data both present)
# 2) Estimate the posterior of the augmented data
################################################################################

posterior_binomial <- function(y, N, y0, N0, discount_function,
                               alpha_max, fix_alpha, a0, b0,
                               number_mcmc, weibull_scale, weibull_shape,
                               method) {

  ### Compute posterior(s) of current (flat) and historical (prior) data
  ### with non-informative priors
  if (!is.null(N)) {
    posterior_flat <- rbeta(number_mcmc, y + a0, N - y + b0)
  } else {
    posterior_flat <- NULL
  }

  if (!is.null(N0)) {
    prior <- rbeta(number_mcmc, y0 + a0, N0 - y0 + b0)
  } else {
    prior <- NULL
  }

  ##############################################################################
  # Discount function
  ##############################################################################

  ### Compute stochastic comparison and alpha discount only if both
  ### N and N0 are present (i.e., current & historical data are present)
  if (!is.null(N) & !is.null(N0)) {

    ### Test of model vs real
    if (method == "fixed") {
      p_hat <- mean(posterior_flat < prior) # larger is higher failure
      p_hat <- 2 * ifelse(p_hat > 0.5, 1 - p_hat, p_hat)
    } else if (method == "mc") {
      # v     <- 1 / ((y + a0 - 1)/posterior_flat^2 + (N-y+b0-1)/(posterior_flat-1)^2)
      # v0    <- 1 / ((y0 + a0 - 1)/prior^2 + (N0-y0+b0-1)/(prior-1)^2)
      v <- posterior_flat * (1 - posterior_flat) / N
      v0 <- prior * (1 - prior) / N0
      Z <- abs(posterior_flat - prior) / sqrt(v + v0)
      p_hat <- 2 * (1 - pnorm(Z))
    }

    ### Number of effective sample size given shape and scale discount function
    if (fix_alpha == TRUE) {
      alpha_discount <- alpha_max
    } else {

      # Compute alpha discount based on distribution
      if (discount_function == "weibull") {
        alpha_discount <- pweibull(p_hat,
                                   shape = weibull_shape,
                                   scale = weibull_scale
        ) * alpha_max
      } else if (discount_function == "scaledweibull") {
        max_p <- pweibull(1,
                          shape = weibull_shape,
                          scale = weibull_scale
        )

        alpha_discount <- pweibull(p_hat,
                                   shape = weibull_shape,
                                   scale = weibull_scale
        ) * alpha_max / max_p
      } else if (discount_function == "identity") {
        alpha_discount <- p_hat * alpha_max
      }
    }
  } else {
    alpha_discount <- NULL
    p_hat <- NULL
  }

  ##############################################################################
  # Posterior augmentation
  # - If current or historical data are missing, this will not augment but
  #   will return the posterior of the non-missing data (with flat prior)
  ##############################################################################

  ### If only the historical data is present, compute posterior on historical
  if (is.null(N0) & !is.null(N)) {
    posterior <- posterior_flat
  } else if (!is.null(N0) & is.null(N)) {
    posterior <- prior
  } else if (!is.null(N0) & !is.null(N)) {
    effective_N0 <- N0 * alpha_discount
    a_prior <- (y0 / N0) * effective_N0 + a0
    b_prior <- effective_N0 - (y0 / N0) * effective_N0 + b0
    a_post_aug <- y + a_prior
    b_post_aug <- N - y + b_prior
    posterior <- rbeta(number_mcmc, a_post_aug, b_post_aug)
  }

  return(list(
    alpha_discount = alpha_discount,
    p_hat = p_hat,
    posterior = posterior,
    posterior_flat = posterior_flat,
    prior = prior,
    weibull_scale = weibull_scale,
    weibull_shape = weibull_shape,
    y = y,
    N = N,
    y0 = y0,
    N0 = N0
  ))
}

Try the bayesDP package in your browser

Any scripts or data that you put into this service are public.

bayesDP documentation built on March 18, 2022, 7:41 p.m.