Nothing
betabinom_HM <- function( cover = NULL, n = NULL, a = NULL, b = NULL, plot = FALSE, xlab = "x",
ylab = "Probability" ){
# 'cover' (i) missing (ii) non-numeric (iii) out of the range (0,1)
if ( is.null(cover) ) {
stop("'cover' has not been defined")
} else {
if ( length(unlist(cover))>1 ) { message("More than one value for 'cover', the first one will only be used")
if ( !is.numeric(cover[1]) | cover<=0 | cover>=1 ) { stop("Invalid 'cover' value") } else { cover <- cover[1] }
} else { if ( !is.numeric(cover) | cover<=0 | cover>=1 ) { stop("Invalid 'cover' value") } }
}
# Likelihood n input (i) more than one value for parameters (ii) non-numeric input (iii) non-positive integer
if ( is.null(n) ) {
stop("'n' has not been defined")
} else {
if ( length(unlist(n))>1 ) { message("More than one value for 'n', the first one will only be used")
if ( !is.numeric(n) | n<=0 | n%%1!=0) { stop("Invalid 'n' value") } else { n <- n[1] }
} else { if ( !is.numeric(n) | n<=0 | n%%1!=0) { stop("Invalid 'n' value") } }
}
# Likelihood a input (i) more than one value for parameters (ii) non-numeric input (iii) non-positive
if ( is.null(a) ) {
stop("'a' has not been defined")
} else {
if ( length(unlist(a))>1 ) { message("More than one value for 'a', the first one will only be used")
if ( !is.numeric(a) | a<=0 ) { stop("Invalid 'a' value") } else { a <- a[1] }
} else { if ( !is.numeric(a) | a<=0 ) { stop("Invalid 'a' value") } }
}
# Likelihood b input (i) more than one value for parameters (ii) non-numeric input (iii) non-positive
if ( is.null(b) ) {
stop("'b' has not been defined")
} else {
if ( length(unlist(b))>1 ) { message("More than one value for 'b', the first one will only be used")
if ( !is.numeric(b) | b<=0 ) { stop("Invalid 'b' value") } else { b <- b[1] }
} else { if ( !is.numeric(b) | b<=0 ) { stop("Invalid 'b' value") } }
}
##################################################################
# Algorithm for the calculation of the HM region, using ordered probabilities
far <- 1-cover
mean_pr <- n*a / (a+b)
var_pr <- n*a*b*(a+b+n) / ( (a+b)^2*(a+b+1) )
lb <- max( floor(mean_pr - sqrt((1/far)*var_pr)), 0 )
ub <- min( ceiling(mean_pr + sqrt((1/far)* var_pr)), n )
# Locations of the ordered probabilities
Pi <- order( dbbinom(lb:ub, size = n, alpha = a, beta = b), decreasing = T ) + lb - 1
nnn <- 1
sumprob <- 0
diff <- 1
E <- c()
stopp <- 0
# Loop which ends when the absolute difference with the desired coverage is minimized
while (stopp==0) {
sumprob <- sumprob + dbbinom( Pi[nnn], size = n, alpha = a, beta = b )
if ( abs(sumprob - (1-far)) < diff ) {
E <- c( E, Pi[nnn] )
diff <- abs( sumprob - (1-far) )
nnn <- nnn + 1
} else { stopp = 1 }
}
##################################################################
# HM region
ed <- c( min(E), max(E) )
if ( plot == T) {
# Graphical parameters for the range and the plotted region
range <- ed[2] - ed[1]
xi <- max( 0, floor(ed[1]-0.15*range) ):ceiling( ed[2] + 0.15*range )
pi <- dbbinom( xi, size = n, alpha = a, beta = b )
# Graphical parameters for the colors
ind0 <- which( xi<min(ed) | xi > max(ed) )
cols <- rep( rgb(0, 1, 0, 0.3), times = length(xi) )
cols[ind0] <- "white"
# Graphical parameter for the main of the plot
percov <- round( 100*sum( dbbinom( ed[1]:ed[2], size = n, alpha = a, beta = b ) ), 2 )
barplot( pi, xlab = xlab, ylab = ylab, main = bquote("Beta-Binomial: "~.(percov)*"% HM = ["*.(ed[1])*", "~ .(ed[2])*"]" ), axes = F, names.arg = xi, col = cols )
axis(2)
}
# The data frame of the output
RES <- data.frame( lower.bound = ed[1], upper.bound = ed[2],
coverage = sum( dbbinom( ed[1]:ed[2], size = n, alpha = a, beta = b ) ) )
# message when a=b
if ( dbbinom( ed[1], size = n, alpha = a, beta = b )==dbbinom( ed[2]+1, size = n, alpha = a, beta = b ) ) {
message(paste("Please note the region [",ed[1]+1,",",ed[2]+1,"] has the same coverage due to the symmetry of Beta Binomial"))}
return(RES)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.