Description Usage Arguments Author(s) References Examples
Function for differential expression analysis of bead array data using the Multi-level Mixed model of Kim and Lin (2011).
1 2 | MLM.beadarray(sig, stderr, nbeads, groups, var.equal = FALSE, max.iteration = 20,
epsilon = 1e-06, method = "REML")
|
sig |
The summarized and normalized average intensities |
stderr |
The standard errors of the means |
nbeads |
The number of beads used for summarization |
groups |
This refers to the groups to be compared. For filtering, group refers to the number of cloumns of sig. However, for the differential expression analysis, the user should define the group variable as appropriate for his/her data. |
var.equal |
i.e assuming equal variance for the variance of the array random effects |
max.iteration |
The maximum number of iteration to perform |
epsilon |
control limit for convergence |
method |
Allows one to choose between restricted maximum likelihood (REML) or maximum likelihood (ML) estimations |
Ryung S. Kim and Juan Lin
Kim, R.S. and Lin, J. (2011). Multi-level mixed effects models for bead arrays. Bioinformatics, 27(5):633-640.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | require(beadarrayExampleData)
data(exampleSummaryData)
exampleSummaryDatalog2 <- channel(exampleSummaryData, "G")[1:40,]
exampleSummaryDataNorm <- normaliseIllumina(exampleSummaryDatalog2,
method = "quantile", transform = "none")[1:40,]
eSet <- na.omit(exprs(exampleSummaryDataNorm))[1:40,]
seSet <- na.omit(se.exprs(exampleSummaryDataNorm))[1:40,]
nSet <- na.omit(attributes(exampleSummaryDataNorm)$assayData$nObservations)[1:40,]
stderrs<-seSet/sqrt(nSet)
##define group variable as appropriate for your data
group1 <- c(1:6)
group2 <- c(7:12)
fit1 <- MLM.beadarray(eSet, stderrs, nSet, list(group1,group2), var.equal = TRUE,
max.iteration = 20, method = "ML")
df<-length(group1)+length(group2)-2
fit1$pvalue<-2*(1-pt(abs(fit1$t.statistics),df))
fit1$PvalADjust<-p.adjust(fit1$pvalue, method ="fdr", n = length(fit1$pvalue))
length(which(fit1$PvalADjust<0.05))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.