Nothing
#Unlike other unit tests for this package, the following will not unit test the
#method directly. This is because the method, posterior.beaver_mcmc_bma,
# utilizes NextMethod(), and as per documentation "NextMethod should not be
#called except in methods called by UseMethod...", which places special objects
#in the evaluation frame (.Class, .Generic, and .Method) to direct the
#dispatching. Calling posterior.beaver_mcmc_bma directly results in the absence
#of these special objects, and any attempt to re-establish them for unit
#testing would effectively just re-create the generic.
test_that("posterior works against an S3 object of class beaver_mcmc_bma, produces an object with correct properties", { # nolint
nb_monotone_incr_new <- readRDS(test_path("fixtures", "nb_monotone_incr_new.rds")) # nolint
expect_failure(expect_s3_class(nb_monotone_incr_new, NA))
expect_s3_class(nb_monotone_incr_new, "data.frame")
load(test_path("fixtures", "nb_bma_objects.Rdata"))
expect_failure(expect_s3_class(nb_bma, NA))
expect_s3_class(
nb_bma,
c("beaver_mcmc_bma", "yodel_bma", "beaver_mcmc"),
exact = TRUE
)
#new_data----
#>reference_dose == NULL----
posterior1 <- posterior(
x = nb_bma,
doses = attr(nb_bma, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
new_data = nb_monotone_incr_new
)
expect_true(is.list(posterior1))
expect_named(posterior1, c("stats", "samples"))
expect_failure(expect_s3_class(posterior1$stats, NA))
expect_s3_class(posterior1$stats, "data.frame")
expect_failure(expect_s3_class(posterior1$samples, NA))
expect_s3_class(posterior1$samples, "data.frame")
#>>stats only----
posterior1_stats <- posterior(
x = nb_bma,
doses = attr(nb_bma, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = TRUE,
return_samples = FALSE,
new_data = nb_monotone_incr_new
)
expect_true(is.list(posterior1_stats))
expect_named(posterior1_stats, c("stats", "samples"))
expect_identical(posterior1_stats$stats, posterior1$stats)
expect_true(is.null(posterior1_stats$samples))
#>>samples only----
posterior1_samples <- posterior(
x = nb_bma,
doses = attr(nb_bma, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = FALSE,
return_samples = TRUE,
new_data = nb_monotone_incr_new
)
expect_true(is.list(posterior1_samples))
expect_named(posterior1_samples, c("stats", "samples"))
expect_true(is.null(posterior1_samples$stats))
expect_identical(posterior1_samples$samples, posterior1$samples)
#>reference_dose == [first dose], reference_type == "difference"----
posterior1a <- posterior(
x = nb_bma,
doses = attr(nb_bma, "doses"),
reference_dose = attr(nb_bma, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
new_data = nb_monotone_incr_new,
reference_type = "difference"
)
expect_true(is.list(posterior1a))
expect_named(posterior1a, c("stats", "samples"))
expect_failure(expect_s3_class(posterior1a$stats, NA))
expect_s3_class(posterior1a$stats, "data.frame")
expect_failure(expect_s3_class(posterior1a$samples, NA))
expect_s3_class(posterior1a$samples, "data.frame")
#>reference_dose == [first dose], reference_type == "ratio"----
posterior1b <- posterior(
x = nb_bma,
doses = attr(nb_bma, "doses"),
reference_dose = attr(nb_bma, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
new_data = nb_monotone_incr_new,
reference_type = "ratio"
)
expect_true(is.list(posterior1b))
expect_named(posterior1b, c("stats", "samples"))
expect_failure(expect_s3_class(posterior1b$stats, NA))
expect_s3_class(posterior1b$stats, "data.frame")
expect_failure(expect_s3_class(posterior1b$samples, NA))
expect_s3_class(posterior1b$samples, "data.frame")
#contrast----
#>reference_dose == NULL----
posterior2 <- posterior(
x = nb_bma,
doses = attr(nb_bma, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
contrast = matrix(1, 1, 1)
)
expect_true(is.list(posterior2))
expect_named(posterior2, c("stats", "samples"))
expect_failure(expect_s3_class(posterior2$stats, NA))
expect_s3_class(posterior2$stats, "data.frame")
expect_failure(expect_s3_class(posterior2$samples, NA))
expect_s3_class(posterior2$samples, "data.frame")
#>>stats only----
posterior2_stats <- posterior(
x = nb_bma,
doses = attr(nb_bma, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = TRUE,
return_samples = FALSE,
contrast = matrix(1, 1, 1)
)
expect_true(is.list(posterior2_stats))
expect_named(posterior2_stats, c("stats", "samples"))
expect_identical(posterior2_stats$stats, posterior2$stats)
expect_true(is.null(posterior2_stats$samples))
#>>samples only----
posterior2_samples <- posterior(
x = nb_bma,
doses = attr(nb_bma, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = FALSE,
return_samples = TRUE,
contrast = matrix(1, 1, 1)
)
expect_true(is.list(posterior2_samples))
expect_named(posterior2_samples, c("stats", "samples"))
expect_true(is.null(posterior2_samples$stats))
expect_identical(posterior2_samples$samples, posterior2$samples)
#>reference_dose == [first dose], reference_type == "difference"----
posterior2a <- posterior(
x = nb_bma,
doses = attr(nb_bma, "doses"),
reference_dose = attr(nb_bma, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
contrast = matrix(1, 1, 1),
reference_type = "difference"
)
expect_true(is.list(posterior2a))
expect_named(posterior2a, c("stats", "samples"))
expect_failure(expect_s3_class(posterior2a$stats, NA))
expect_s3_class(posterior2a$stats, "data.frame")
expect_failure(expect_s3_class(posterior2a$samples, NA))
expect_s3_class(posterior2a$samples, "data.frame")
#>reference_dose == [first dose], reference_type == "ratio"----
posterior2b <- posterior(
x = nb_bma,
doses = attr(nb_bma, "doses"),
reference_dose = attr(nb_bma, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
contrast = matrix(1, 1, 1),
reference_type = "ratio"
)
expect_true(is.list(posterior2b))
expect_named(posterior2b, c("stats", "samples"))
expect_failure(expect_s3_class(posterior2b$stats, NA))
expect_s3_class(posterior2b$stats, "data.frame")
expect_failure(expect_s3_class(posterior2b$samples, NA))
expect_s3_class(posterior2b$samples, "data.frame")
})
test_that("posterior.beaver_mcmc works against an S3 object of class beaver_mcmc, produces an object with correct properties", { # nolint
skip_on_cran()
nb_monotone_incr_new <- readRDS(test_path("fixtures", "nb_monotone_incr_new.rds")) # nolint
expect_failure(expect_s3_class(nb_monotone_incr_new, NA))
expect_s3_class(nb_monotone_incr_new, "data.frame")
load(test_path("fixtures", "nb_indep_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_indep_model_samples_updatedattr, NA))
expect_s3_class(nb_indep_model_samples_updatedattr, "beaver_mcmc")
expect_no_error(
checkmate::assertSubset(
c("covariate_names", "formula", "doses"),
names(attributes(nb_indep_model_samples_updatedattr))
)
)
#new_data----
#>reference_dose == NULL----
posterior1 <- posterior.beaver_mcmc(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
new_data = nb_monotone_incr_new
)
expect_true(is.list(posterior1))
expect_named(posterior1, c("stats", "samples"))
expect_failure(expect_s3_class(posterior1$stats, NA))
expect_s3_class(posterior1$stats, "data.frame")
expect_failure(expect_s3_class(posterior1$samples, NA))
expect_s3_class(posterior1$samples, "data.frame")
#>>stats only----
posterior1_stats <- posterior.beaver_mcmc(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = TRUE,
return_samples = FALSE,
new_data = nb_monotone_incr_new
)
expect_true(is.list(posterior1_stats))
expect_named(posterior1_stats, c("stats", "samples"))
expect_identical(posterior1_stats$stats, posterior1$stats)
expect_true(is.null(posterior1_stats$samples))
#>>samples only----
posterior1_samples <- posterior.beaver_mcmc(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = FALSE,
return_samples = TRUE,
new_data = nb_monotone_incr_new
)
expect_true(is.list(posterior1_samples))
expect_named(posterior1_samples, c("stats", "samples"))
expect_true(is.null(posterior1_samples$stats))
expect_identical(posterior1_samples$samples, posterior1$samples)
#>reference_dose == [first dose], reference_type == "difference"----
posterior1a <- posterior.beaver_mcmc(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
new_data = nb_monotone_incr_new,
reference_type = "difference"
)
expect_true(is.list(posterior1a))
expect_named(posterior1a, c("stats", "samples"))
expect_failure(expect_s3_class(posterior1a$stats, NA))
expect_s3_class(posterior1a$stats, "data.frame")
expect_failure(expect_s3_class(posterior1a$samples, NA))
expect_s3_class(posterior1a$samples, "data.frame")
#>reference_dose == [first dose], reference_type == "ratio"----
posterior1b <- posterior.beaver_mcmc(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
new_data = nb_monotone_incr_new,
reference_type = "ratio"
)
expect_true(is.list(posterior1b))
expect_named(posterior1b, c("stats", "samples"))
expect_failure(expect_s3_class(posterior1b$stats, NA))
expect_s3_class(posterior1b$stats, "data.frame")
expect_failure(expect_s3_class(posterior1b$samples, NA))
expect_s3_class(posterior1b$samples, "data.frame")
#contrast----
#>reference_dose == NULL----
posterior2 <- posterior.beaver_mcmc(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
contrast = matrix(1, 1, 1)
)
expect_true(is.list(posterior2))
expect_named(posterior2, c("stats", "samples"))
expect_failure(expect_s3_class(posterior2$stats, NA))
expect_s3_class(posterior2$stats, "data.frame")
expect_failure(expect_s3_class(posterior2$samples, NA))
expect_s3_class(posterior2$samples, "data.frame")
#>>stats only----
posterior2_stats <- posterior.beaver_mcmc(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = TRUE,
return_samples = FALSE,
contrast = matrix(1, 1, 1)
)
expect_true(is.list(posterior2_stats))
expect_named(posterior2_stats, c("stats", "samples"))
expect_identical(posterior2_stats$stats, posterior2$stats)
expect_true(is.null(posterior2_stats$samples))
#>>samples only----
posterior2_samples <- posterior.beaver_mcmc(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = FALSE,
return_samples = TRUE,
contrast = matrix(1, 1, 1)
)
expect_true(is.list(posterior2_samples))
expect_named(posterior2_samples, c("stats", "samples"))
expect_true(is.null(posterior2_samples$stats))
expect_identical(posterior2_samples$samples, posterior2$samples)
#>reference_dose == [first dose], reference_type == "difference"----
posterior2a <- posterior.beaver_mcmc(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
contrast = matrix(1, 1, 1),
reference_type = "difference"
)
expect_true(is.list(posterior2a))
expect_named(posterior2a, c("stats", "samples"))
expect_failure(expect_s3_class(posterior2a$stats, NA))
expect_s3_class(posterior2a$stats, "data.frame")
expect_failure(expect_s3_class(posterior2a$samples, NA))
expect_s3_class(posterior2a$samples, "data.frame")
#>reference_dose == [first dose], reference_type == "ratio"----
posterior2b <- posterior.beaver_mcmc(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
contrast = matrix(1, 1, 1),
reference_type = "ratio"
)
expect_true(is.list(posterior2b))
expect_named(posterior2b, c("stats", "samples"))
expect_failure(expect_s3_class(posterior2b$stats, NA))
expect_s3_class(posterior2b$stats, "data.frame")
expect_failure(expect_s3_class(posterior2b$samples, NA))
expect_s3_class(posterior2b$samples, "data.frame")
})
test_that("posterior.beaver_mcmc works against an S3 object of class beaver_mcmc, with covariates, produces an object with correct properties", { # nolint
skip_on_cran()
nb_monotone_incr_cov_new <- readRDS(test_path("fixtures", "nb_monotone_incr_cov_new.rds")) # nolint
expect_failure(expect_s3_class(nb_monotone_incr_cov_new, NA))
expect_s3_class(nb_monotone_incr_cov_new, "data.frame")
load(test_path("fixtures", "nb_emax_cov_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_emax_model_cov_samples_updatedattr, NA))
expect_s3_class(nb_emax_model_cov_samples_updatedattr, "beaver_mcmc")
expect_no_error(
checkmate::assertSubset(
c("covariate_names", "formula", "doses"),
names(attributes(nb_emax_model_cov_samples_updatedattr))
)
)
#new_data----
#>reference_dose == NULL----
posterior1 <- posterior.beaver_mcmc(
x = nb_emax_model_cov_samples_updatedattr,
doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
new_data = nb_monotone_incr_cov_new
)
expect_true(is.list(posterior1))
expect_named(posterior1, c("stats", "samples"))
expect_failure(expect_s3_class(posterior1$stats, NA))
expect_s3_class(posterior1$stats, "data.frame")
expect_failure(expect_s3_class(posterior1$samples, NA))
expect_s3_class(posterior1$samples, "data.frame")
#>>stats only----
posterior1_stats <- posterior.beaver_mcmc(
x = nb_emax_model_cov_samples_updatedattr,
doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = TRUE,
return_samples = FALSE,
new_data = nb_monotone_incr_cov_new
)
expect_true(is.list(posterior1_stats))
expect_named(posterior1_stats, c("stats", "samples"))
expect_identical(posterior1_stats$stats, posterior1$stats)
expect_true(is.null(posterior1_stats$samples))
#>>samples only----
posterior1_samples <- posterior.beaver_mcmc(
x = nb_emax_model_cov_samples_updatedattr,
doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = FALSE,
return_samples = TRUE,
new_data = nb_monotone_incr_cov_new
)
expect_true(is.list(posterior1_samples))
expect_named(posterior1_samples, c("stats", "samples"))
expect_true(is.null(posterior1_samples$stats))
expect_identical(posterior1_samples$samples, posterior1$samples)
#>reference_dose == [first dose], reference_type == "difference"----
posterior1a <- posterior.beaver_mcmc(
x = nb_emax_model_cov_samples_updatedattr,
doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
reference_dose = attr(nb_emax_model_cov_samples_updatedattr, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
new_data = nb_monotone_incr_cov_new,
reference_type = "difference"
)
expect_true(is.list(posterior1a))
expect_named(posterior1a, c("stats", "samples"))
expect_failure(expect_s3_class(posterior1a$stats, NA))
expect_s3_class(posterior1a$stats, "data.frame")
expect_failure(expect_s3_class(posterior1a$samples, NA))
expect_s3_class(posterior1a$samples, "data.frame")
#>reference_dose == [first dose], reference_type == "ratio"----
posterior1b <- posterior.beaver_mcmc(
x = nb_emax_model_cov_samples_updatedattr,
doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
reference_dose = attr(nb_emax_model_cov_samples_updatedattr, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
new_data = nb_monotone_incr_cov_new,
reference_type = "ratio"
)
expect_true(is.list(posterior1b))
expect_named(posterior1b, c("stats", "samples"))
expect_failure(expect_s3_class(posterior1b$stats, NA))
expect_s3_class(posterior1b$stats, "data.frame")
expect_failure(expect_s3_class(posterior1b$samples, NA))
expect_s3_class(posterior1b$samples, "data.frame")
#contrast----
#>reference_dose == NULL----
posterior2 <- posterior.beaver_mcmc(
x = nb_emax_model_cov_samples_updatedattr,
doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
contrast = matrix(c(1, 40), 1, 2)
)
expect_true(is.list(posterior2))
expect_named(posterior2, c("stats", "samples"))
expect_failure(expect_s3_class(posterior2$stats, NA))
expect_s3_class(posterior2$stats, "data.frame")
expect_failure(expect_s3_class(posterior2$samples, NA))
expect_s3_class(posterior2$samples, "data.frame")
#>>stats only----
posterior2_stats <- posterior.beaver_mcmc(
x = nb_emax_model_cov_samples_updatedattr,
doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = TRUE,
return_samples = FALSE,
contrast = matrix(c(1, 40), 1, 2)
)
expect_true(is.list(posterior2_stats))
expect_named(posterior2_stats, c("stats", "samples"))
expect_identical(posterior2_stats$stats, posterior2$stats)
expect_true(is.null(posterior2_stats$samples))
#>>samples only----
posterior2_samples <- posterior.beaver_mcmc(
x = nb_emax_model_cov_samples_updatedattr,
doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = FALSE,
return_samples = TRUE,
contrast = matrix(c(1, 40), 1, 2)
)
expect_true(is.list(posterior2_samples))
expect_named(posterior2_samples, c("stats", "samples"))
expect_true(is.null(posterior2_samples$stats))
expect_identical(posterior2_samples$samples, posterior2$samples)
#>reference_dose == [first dose], reference_type == "difference"----
posterior2a <- posterior.beaver_mcmc(
x = nb_emax_model_cov_samples_updatedattr,
doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
reference_dose = attr(nb_emax_model_cov_samples_updatedattr, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
contrast = matrix(c(1, 40), 1, 2),
reference_type = "difference"
)
expect_true(is.list(posterior2a))
expect_named(posterior2a, c("stats", "samples"))
expect_failure(expect_s3_class(posterior2a$stats, NA))
expect_s3_class(posterior2a$stats, "data.frame")
expect_failure(expect_s3_class(posterior2a$samples, NA))
expect_s3_class(posterior2a$samples, "data.frame")
#>reference_dose == [first dose], reference_type == "ratio"----
posterior2b <- posterior.beaver_mcmc(
x = nb_emax_model_cov_samples_updatedattr,
doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
reference_dose = attr(nb_emax_model_cov_samples_updatedattr, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
contrast = matrix(c(1, 40), 1, 2),
reference_type = "ratio"
)
expect_true(is.list(posterior2b))
expect_named(posterior2b, c("stats", "samples"))
expect_failure(expect_s3_class(posterior2b$stats, NA))
expect_s3_class(posterior2b$stats, "data.frame")
expect_failure(expect_s3_class(posterior2b$samples, NA))
expect_s3_class(posterior2b$samples, "data.frame")
})
test_that("posterior works identically to posterior.beaver_mcmc", {
skip_on_cran()
nb_monotone_incr_new <- readRDS(test_path("fixtures", "nb_monotone_incr_new.rds")) # nolint
expect_failure(expect_s3_class(nb_monotone_incr_new, NA))
expect_s3_class(nb_monotone_incr_new, "data.frame")
load(test_path("fixtures", "nb_indep_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_indep_model_samples_updatedattr, NA))
expect_s3_class(nb_indep_model_samples_updatedattr, "beaver_mcmc")
expect_no_error(
checkmate::assertSubset(
c("covariate_names", "formula", "doses"),
names(attributes(nb_indep_model_samples_updatedattr))
)
)
#new_data----
#>reference_dose == NULL----
expect_identical(
yodel::posterior(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
new_data = nb_monotone_incr_new
),
posterior.beaver_mcmc(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
new_data = nb_monotone_incr_new
)
)
#>reference_dose == [first dose], reference_type == "difference"----
expect_identical(
yodel::posterior(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
new_data = nb_monotone_incr_new,
reference_type = "difference"
),
posterior.beaver_mcmc(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
new_data = nb_monotone_incr_new,
reference_type = "difference"
)
)
#>reference_dose == [first dose], reference_type == "ratio"----
expect_identical(
yodel::posterior(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
new_data = nb_monotone_incr_new,
reference_type = "ratio"
),
posterior.beaver_mcmc(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
new_data = nb_monotone_incr_new,
reference_type = "ratio"
)
)
#contrast----
#>reference_dose == NULL----
expect_identical(
yodel::posterior(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
contrast = matrix(1, 1, 1)
),
posterior.beaver_mcmc(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
contrast = matrix(1, 1, 1)
)
)
#>reference_dose == [first dose], reference_type == "difference"----
expect_identical(
yodel::posterior(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
contrast = matrix(1, 1, 1),
reference_type = "difference"
),
posterior.beaver_mcmc(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
contrast = matrix(1, 1, 1),
reference_type = "difference"
)
)
#>reference_dose == [first dose], reference_type == "ratio"----
expect_identical(
yodel::posterior(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
contrast = matrix(1, 1, 1),
reference_type = "ratio"
),
posterior.beaver_mcmc(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
contrast = matrix(1, 1, 1),
reference_type = "ratio"
)
)
})
test_that("posterior_bma works against an S3 object of class beaver_mcmc, produces an object with correct properties", { # nolint
skip_on_cran()
nb_monotone_incr_new <- readRDS(test_path("fixtures", "nb_monotone_incr_new.rds")) # nolint
expect_failure(expect_s3_class(nb_monotone_incr_new, NA))
expect_s3_class(nb_monotone_incr_new, "data.frame")
load(test_path("fixtures", "nb_indep_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_indep_model_samples_updatedattr, NA))
expect_s3_class(nb_indep_model_samples_updatedattr, "beaver_mcmc")
expect_no_error(
checkmate::assertSubset(
c("covariate_names", "formula", "doses"),
names(attributes(nb_indep_model_samples_updatedattr))
)
)
#new_data----
#>reference_dose == NULL----
posterior1 <- posterior_bma(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
new_data = nb_monotone_incr_new
)
expect_failure(expect_s3_class(posterior1, NA))
expect_s3_class(posterior1, "data.frame")
#>reference_dose == [first dose], reference_type == "difference"----
posterior1a <- posterior_bma(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
prob = c(.025, .975),
new_data = nb_monotone_incr_new,
reference_type = "difference"
)
expect_failure(expect_s3_class(posterior1a, NA))
expect_s3_class(posterior1a, "data.frame")
#>reference_dose == [first dose], reference_type == "ratio"----
posterior1b <- posterior_bma(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
prob = c(.025, .975),
new_data = nb_monotone_incr_new,
reference_type = "ratio"
)
expect_failure(expect_s3_class(posterior1b, NA))
expect_s3_class(posterior1b, "data.frame")
#contrast----
#>reference_dose == NULL----
posterior2 <- posterior_bma(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
contrast = matrix(1, 1, 1)
)
expect_failure(expect_s3_class(posterior2, NA))
expect_s3_class(posterior2, "data.frame")
#>reference_dose == [first dose], reference_type == "difference"----
posterior2a <- posterior_bma(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
prob = c(.025, .975),
contrast = matrix(1, 1, 1),
reference_type = "difference"
)
expect_failure(expect_s3_class(posterior2a, NA))
expect_s3_class(posterior2a, "data.frame")
#>reference_dose == [first dose], reference_type == "ratio"----
posterior2b <- posterior_bma(
x = nb_indep_model_samples_updatedattr,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
prob = c(.025, .975),
contrast = matrix(1, 1, 1),
reference_type = "ratio"
)
expect_failure(expect_s3_class(posterior2b, NA))
expect_s3_class(posterior2b, "data.frame")
})
test_that("get_samps works against an S3 object of class beaver_mcmc, produces an object with correct properties", { # nolint
nb_monotone_incr_new <- readRDS(test_path("fixtures", "nb_monotone_incr_new.rds")) # nolint
expect_failure(expect_s3_class(nb_monotone_incr_new, NA))
expect_s3_class(nb_monotone_incr_new, "data.frame")
load(test_path("fixtures", "nb_indep_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_indep_model_samples_updatedattr, NA))
expect_s3_class(nb_indep_model_samples_updatedattr, "beaver_mcmc")
expect_no_error(
checkmate::assertSubset(
c("covariate_names", "formula", "doses"),
names(attributes(nb_indep_model_samples_updatedattr))
)
)
draws <- draws(nb_indep_model_samples_updatedattr)
#new_data----
contrast1 <- get_contrast(
x = nb_indep_model_samples_updatedattr,
new_data = nb_monotone_incr_new,
contrast = NULL
)
expect_no_error(
get_samps(
x = nb_indep_model_samples_updatedattr,
draws = draws,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
contrast = contrast1
)
)
expect_invisible(
get_samps(
x = nb_indep_model_samples_updatedattr,
draws = draws,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
contrast = contrast1
)
)
samps1 <- get_samps(
x = nb_indep_model_samples_updatedattr,
draws = draws,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
contrast = contrast1
)
get_samps_checks(
samps = samps1,
samples = nb_indep_model_samples_updatedattr,
draws = draws,
contrast = contrast1
)
#contrast----
contrast2 <- get_contrast(
x = nb_indep_model_samples_updatedattr,
new_data = NULL,
contrast = matrix(1, 1, 1)
)
expect_no_error(
get_samps(
x = nb_indep_model_samples_updatedattr,
draws = draws,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
contrast = contrast2
)
)
expect_invisible(
get_samps(
x = nb_indep_model_samples_updatedattr,
draws = draws,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
contrast = contrast2
)
)
samps2 <- get_samps(
x = nb_indep_model_samples_updatedattr,
draws = draws,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
contrast = contrast2
)
get_samps_checks(
samps = samps2,
samples = nb_indep_model_samples_updatedattr,
draws = draws,
contrast = contrast2
)
})
test_that("get_samps works against an S3 object of class beaver_mcmc, with covariates, produces an object with correct properties", { # nolint
nb_monotone_incr_cov_new <- readRDS(test_path("fixtures", "nb_monotone_incr_cov_new.rds")) # nolint
expect_failure(expect_s3_class(nb_monotone_incr_cov_new, NA))
expect_s3_class(nb_monotone_incr_cov_new, "data.frame")
load(test_path("fixtures", "nb_emax_cov_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_emax_model_cov_samples_updatedattr, NA))
expect_s3_class(nb_emax_model_cov_samples_updatedattr, "beaver_mcmc")
expect_no_error(
checkmate::assertSubset(
c("covariate_names", "formula", "doses"),
names(attributes(nb_emax_model_cov_samples_updatedattr))
)
)
draws <- draws(nb_emax_model_cov_samples_updatedattr)
#new_data----
contrast1 <- get_contrast(
x = nb_emax_model_cov_samples_updatedattr,
new_data = nb_monotone_incr_cov_new,
contrast = NULL
)
expect_no_error(
get_samps(
x = nb_emax_model_cov_samples_updatedattr,
draws = draws,
doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
contrast = contrast1
)
)
expect_invisible(
get_samps(
x = nb_emax_model_cov_samples_updatedattr,
draws = draws,
doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
contrast = contrast1
)
)
samps1 <- get_samps(
x = nb_emax_model_cov_samples_updatedattr,
draws = draws,
doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
contrast = contrast1
)
get_samps_checks(
samps = samps1,
samples = nb_emax_model_cov_samples_updatedattr,
draws = draws,
contrast = contrast1
)
#contrast----
contrast2 <- get_contrast(
x = nb_emax_model_cov_samples_updatedattr,
new_data = NULL,
contrast = matrix(c(1, 40), 1, 2)
)
expect_no_error(
get_samps(
x = nb_emax_model_cov_samples_updatedattr,
draws = draws,
doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
contrast = contrast2
)
)
expect_invisible(
get_samps(
x = nb_emax_model_cov_samples_updatedattr,
draws = draws,
doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
contrast = contrast2
)
)
samps2 <- get_samps(
x = nb_emax_model_cov_samples_updatedattr,
draws = draws,
doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
contrast = contrast2
)
get_samps_checks(
samps = samps2,
samples = nb_emax_model_cov_samples_updatedattr,
draws = draws,
contrast = contrast2
)
get_samps_checks(
samps = samps2,
samples = nb_emax_model_cov_samples_updatedattr,
draws = draws,
contrast = contrast2
)
})
test_that("adjust_reference works against an S3 object of class beaver_mcmc, produces an object with correct properties", { # nolint
nb_monotone_incr_new <- readRDS(test_path("fixtures", "nb_monotone_incr_new.rds")) # nolint
expect_failure(expect_s3_class(nb_monotone_incr_new, NA))
expect_s3_class(nb_monotone_incr_new, "data.frame")
load(test_path("fixtures", "nb_indep_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_indep_model_samples_updatedattr, NA))
expect_s3_class(nb_indep_model_samples_updatedattr, "beaver_mcmc")
expect_no_error(
checkmate::assertSubset(
c("covariate_names", "formula", "doses"),
names(attributes(nb_indep_model_samples_updatedattr))
)
)
draws <- draws(nb_indep_model_samples_updatedattr)
#new_data----
contrast1 <- get_contrast(
x = nb_indep_model_samples_updatedattr,
new_data = nb_monotone_incr_new,
contrast = NULL
)
samps1 <- get_samps(
x = nb_indep_model_samples_updatedattr,
draws = draws,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
contrast = contrast1
)
#>reference_dose == NULL----
expect_no_error(
adjust_reference(
x = nb_indep_model_samples_updatedattr,
samps = samps1,
draws = draws,
contrast = contrast1,
reference_dose = NULL
)
)
adjust_reference1 <- adjust_reference(
x = nb_indep_model_samples_updatedattr,
samps = samps1,
draws = draws,
contrast = contrast1,
reference_dose = NULL
)
adjust_reference_checks(
adjusted = adjust_reference1,
samples = nb_indep_model_samples_updatedattr,
draws = draws,
contrast = contrast1
)
#>reference_dose == [first dose], reference_type == "difference"----
expect_no_error(
adjust_reference(
x = nb_indep_model_samples_updatedattr,
samps = samps1,
draws = draws,
contrast = contrast1,
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
reference_type = "difference"
)
)
adjust_reference1a <- adjust_reference(
x = nb_indep_model_samples_updatedattr,
samps = samps1,
draws = draws,
contrast = contrast1,
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
reference_type = "difference"
)
adjust_reference_checks(
adjusted = adjust_reference1a,
samples = nb_indep_model_samples_updatedattr,
draws = draws,
contrast = contrast1
)
#>reference_dose == [first dose], reference_type == "ratio"----
expect_no_error(
adjust_reference(
x = nb_indep_model_samples_updatedattr,
samps = samps1,
draws = draws,
contrast = contrast1,
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
reference_type = "ratio"
)
)
adjust_reference1b <- adjust_reference(
x = nb_indep_model_samples_updatedattr,
samps = samps1,
draws = draws,
contrast = contrast1,
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
reference_type = "ratio"
)
adjust_reference_checks(
adjusted = adjust_reference1b,
samples = nb_indep_model_samples_updatedattr,
draws = draws,
contrast = contrast1
)
#contrast----
contrast2 <- get_contrast(
x = nb_indep_model_samples_updatedattr,
new_data = NULL,
contrast = matrix(1, 1, 1)
)
samps2 <- get_samps(
x = nb_indep_model_samples_updatedattr,
draws = draws,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
contrast = contrast2
)
#>reference_dose == NULL----
expect_no_error(
adjust_reference(
x = nb_indep_model_samples_updatedattr,
samps = samps2,
draws = draws,
contrast = contrast2,
reference_dose = NULL
)
)
adjust_reference2 <- adjust_reference(
x = nb_indep_model_samples_updatedattr,
samps = samps2,
draws = draws,
contrast = contrast2,
reference_dose = NULL
)
adjust_reference_checks(
adjusted = adjust_reference2,
samples = nb_indep_model_samples_updatedattr,
draws = draws,
contrast = contrast2
)
#>reference_dose == [first dose], reference_type == "difference"----
expect_no_error(
adjust_reference(
x = nb_indep_model_samples_updatedattr,
samps = samps2,
draws = draws,
contrast = contrast2,
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
reference_type = "difference"
)
)
adjust_reference2a <- adjust_reference(
x = nb_indep_model_samples_updatedattr,
samps = samps2,
draws = draws,
contrast = contrast2,
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
reference_type = "difference"
)
adjust_reference_checks(
adjusted = adjust_reference2a,
samples = nb_indep_model_samples_updatedattr,
draws = draws,
contrast = contrast2
)
#>reference_dose == [first dose], reference_type == "ratio"----
expect_no_error(
adjust_reference(
x = nb_indep_model_samples_updatedattr,
samps = samps2,
draws = draws,
contrast = contrast2,
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
reference_type = "ratio"
)
)
adjust_reference2b <- adjust_reference(
x = nb_indep_model_samples_updatedattr,
samps = samps2,
draws = draws,
contrast = contrast2,
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
reference_type = "ratio"
)
adjust_reference_checks(
adjusted = adjust_reference2b,
samples = nb_indep_model_samples_updatedattr,
draws = draws,
contrast = contrast2
)
})
test_that("adjust_reference_impl works against an S3 object of class beaver_mcmc, produces an object with correct properties", { # nolint
skip_on_cran()
nb_monotone_incr_new <- readRDS(test_path("fixtures", "nb_monotone_incr_new.rds")) # nolint
expect_failure(expect_s3_class(nb_monotone_incr_new, NA))
expect_s3_class(nb_monotone_incr_new, "data.frame")
load(test_path("fixtures", "nb_indep_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_indep_model_samples_updatedattr, NA))
expect_s3_class(nb_indep_model_samples_updatedattr, "beaver_mcmc")
expect_no_error(
checkmate::assertSubset(
c("covariate_names", "formula", "doses"),
names(attributes(nb_indep_model_samples_updatedattr))
)
)
draws <- draws(nb_indep_model_samples_updatedattr)
#new_data----
contrast1 <- get_contrast(
x = nb_indep_model_samples_updatedattr,
new_data = nb_monotone_incr_new,
contrast = NULL
)
samps1 <- get_samps(
x = nb_indep_model_samples_updatedattr,
draws = draws,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
contrast = contrast1
)
samps_ref1 <- get_samps(
x = nb_indep_model_samples_updatedattr,
draws = draws,
doses = attr(nb_indep_model_samples_updatedattr, "doses")[1],
contrast = contrast1
)
#>reference_dose == [first dose], reference_type == "difference"----
expect_no_error(
adjust_reference_impl(
samps = samps1,
samps_ref = samps_ref1,
reference_type = "difference",
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1]
)
)
adjust_reference_impl1a <- adjust_reference_impl(
samps = samps1,
samps_ref = samps_ref1,
reference_type = "difference",
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1]
)
adjust_reference_checks(
adjusted = adjust_reference_impl1a,
samples = nb_indep_model_samples_updatedattr,
draws = draws,
contrast = contrast1
)
#>reference_dose == [first dose], reference_type == "ratio"----
expect_no_error(
adjust_reference_impl1b <- adjust_reference_impl(
samps = samps1,
samps_ref = samps_ref1,
reference_type = "ratio",
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1]
)
)
adjust_reference_impl1b <- adjust_reference_impl(
samps = samps1,
samps_ref = samps_ref1,
reference_type = "ratio",
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1]
)
adjust_reference_checks(
adjusted = adjust_reference_impl1b,
samples = nb_indep_model_samples_updatedattr,
draws = draws,
contrast = contrast1
)
#contrast----
contrast2 <- get_contrast(
x = nb_indep_model_samples_updatedattr,
new_data = NULL,
contrast = matrix(1, 1, 1)
)
samps2 <- get_samps(
x = nb_indep_model_samples_updatedattr,
draws = draws,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
contrast = contrast2
)
samps_ref2 <- get_samps(
x = nb_indep_model_samples_updatedattr,
draws = draws,
doses = attr(nb_indep_model_samples_updatedattr, "doses")[1],
contrast = contrast2
)
#>reference_dose == [first dose], reference_type == "difference"----
expect_no_error(
adjust_reference_impl(
samps = samps2,
samps_ref = samps_ref2,
reference_type = "difference",
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1]
)
)
adjust_reference_impl2a <- adjust_reference_impl(
samps = samps2,
samps_ref = samps_ref2,
reference_type = "difference",
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1]
)
adjust_reference_checks(
adjusted = adjust_reference_impl2a,
samples = nb_indep_model_samples_updatedattr,
draws = draws,
contrast = contrast2
)
#>reference_dose == [first dose], reference_type == "ratio"----
expect_no_error(
adjust_reference_impl2b <- adjust_reference_impl(
samps = samps2,
samps_ref = samps_ref2,
reference_type = "ratio",
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1]
)
)
adjust_reference_impl2b <- adjust_reference_impl(
samps = samps2,
samps_ref = samps_ref2,
reference_type = "ratio",
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1]
)
adjust_reference_checks(
adjusted = adjust_reference_impl2b,
samples = nb_indep_model_samples_updatedattr,
draws = draws,
contrast = contrast2
)
})
test_that("get_stats works against an S3 object of class beaver_mcmc, produces an object with correct properties", { # nolint
nb_monotone_incr_new <- readRDS(test_path("fixtures", "nb_monotone_incr_new.rds")) # nolint
expect_failure(expect_s3_class(nb_monotone_incr_new, NA))
expect_s3_class(nb_monotone_incr_new, "data.frame")
load(test_path("fixtures", "nb_indep_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_indep_model_samples_updatedattr, NA))
expect_s3_class(nb_indep_model_samples_updatedattr, "beaver_mcmc")
expect_no_error(
checkmate::assertSubset(
c("covariate_names", "formula", "doses"),
names(attributes(nb_indep_model_samples_updatedattr))
)
)
draws <- draws(nb_indep_model_samples_updatedattr)
#new_data----
contrast1 <- get_contrast(
x = nb_indep_model_samples_updatedattr,
new_data = nb_monotone_incr_new,
contrast = NULL
)
samps1 <- get_samps(
x = nb_indep_model_samples_updatedattr,
draws = draws,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
contrast = contrast1
)
#>reference_dose == NULL----
adjust_reference1 <- adjust_reference(
x = nb_indep_model_samples_updatedattr,
samps = samps1,
draws = draws,
contrast = contrast1,
reference_dose = NULL
)
expect_no_error(
get_stats(
samples = adjust_reference1,
prob = c(.025, .975),
return_stats = TRUE
)
)
stats1 <- get_stats(
samples = adjust_reference1,
prob = c(.025, .975),
return_stats = TRUE
)
get_stats_checks(
stats = stats1,
samples = nb_indep_model_samples_updatedattr,
contrast = contrast1
)
#>reference_dose == [first dose], reference_type == "difference"----
adjust_reference1a <- adjust_reference(
x = nb_indep_model_samples_updatedattr,
samps = samps1,
draws = draws,
contrast = contrast1,
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
reference_type = "difference"
)
expect_no_error(
get_stats(
samples = adjust_reference1a,
prob = c(.025, .975),
return_stats = TRUE
)
)
stats1a <- get_stats(
samples = adjust_reference1a,
prob = c(.025, .975),
return_stats = TRUE
)
get_stats_checks(
stats = stats1a,
samples = nb_indep_model_samples_updatedattr,
contrast = contrast1
)
#>reference_dose == [first dose], reference_type == "ratio"----
adjust_reference1b <- adjust_reference(
x = nb_indep_model_samples_updatedattr,
samps = samps1,
draws = draws,
contrast = contrast1,
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
reference_type = "ratio"
)
expect_no_error(
get_stats(
samples = adjust_reference1b,
prob = c(.025, .975),
return_stats = TRUE
)
)
stats1b <- get_stats(
samples = adjust_reference1b,
prob = c(.025, .975),
return_stats = TRUE
)
get_stats_checks(
stats = stats1b,
samples = nb_indep_model_samples_updatedattr,
contrast = contrast1
)
#contrast----
contrast2 <- get_contrast(
x = nb_indep_model_samples_updatedattr,
new_data = NULL,
contrast = matrix(1, 1, 1)
)
samps2 <- get_samps(
x = nb_indep_model_samples_updatedattr,
draws = draws,
doses = attr(nb_indep_model_samples_updatedattr, "doses"),
contrast = contrast2
)
#>reference_dose == NULL----
adjust_reference2 <- adjust_reference(
x = nb_indep_model_samples_updatedattr,
samps = samps2,
draws = draws,
contrast = contrast2,
reference_dose = NULL
)
expect_no_error(
get_stats(
samples = adjust_reference2,
prob = c(.025, .975),
return_stats = TRUE
)
)
stats2 <- get_stats(
samples = adjust_reference2,
prob = c(.025, .975),
return_stats = TRUE
)
get_stats_checks(
stats = stats2,
samples = nb_indep_model_samples_updatedattr,
contrast = contrast2
)
#>reference_dose == [first dose], reference_type == "difference"----
adjust_reference2a <- adjust_reference(
x = nb_indep_model_samples_updatedattr,
samps = samps2,
draws = draws,
contrast = contrast2,
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
reference_type = "difference"
)
expect_no_error(
get_stats(
samples = adjust_reference2a,
prob = c(.025, .975),
return_stats = TRUE
)
)
stats2a <- get_stats(
samples = adjust_reference2a,
prob = c(.025, .975),
return_stats = TRUE
)
get_stats_checks(
stats = stats2a,
samples = nb_indep_model_samples_updatedattr,
contrast = contrast2
)
#>reference_dose == [first dose], reference_type == "ratio"----
adjust_reference2b <- adjust_reference(
x = nb_indep_model_samples_updatedattr,
samps = samps2,
draws = draws,
contrast = contrast2,
reference_dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
reference_type = "ratio"
)
expect_no_error(
get_stats(
samples = adjust_reference2b,
prob = c(.025, .975),
return_stats = TRUE
)
)
stats2b <- get_stats(
samples = adjust_reference2b,
prob = c(.025, .975),
return_stats = TRUE
)
get_stats_checks(
stats = stats2b,
samples = nb_indep_model_samples_updatedattr,
contrast = contrast2
)
})
test_that("contrast_to_list works against a matrix object, produces an object with correct properties", { # nolint
nb_monotone_incr_new <- readRDS(test_path("fixtures", "nb_monotone_incr_new.rds")) # nolint
expect_failure(expect_s3_class(nb_monotone_incr_new, NA))
expect_s3_class(nb_monotone_incr_new, "data.frame")
load(test_path("fixtures", "nb_indep_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_indep_model_samples_updatedattr, NA))
expect_s3_class(nb_indep_model_samples_updatedattr, "beaver_mcmc")
expect_no_error(
checkmate::assertSubset(
c("doses"),
names(attributes(nb_indep_model_samples_updatedattr))
)
)
#new_data----
contrast1 <- get_contrast(
x = nb_indep_model_samples_updatedattr,
new_data = nb_monotone_incr_new,
contrast = NULL
)
expect_true(is.matrix(contrast1))
expect_no_error(contrast_to_list(contrast = contrast1))
contrast_list1 <- contrast_to_list(contrast = contrast1)
expect_true(is.list(contrast_list1))
expect_named(contrast_list1, NULL)
expect_identical(length(contrast_list1), nrow(contrast1))
#contrast----
contrast2 <- get_contrast(
x = nb_indep_model_samples_updatedattr,
new_data = NULL,
contrast = matrix(1, 1, 1)
)
expect_true(is.matrix(contrast2))
expect_no_error(contrast_to_list(contrast = contrast2))
contrast_list2 <- contrast_to_list(contrast = contrast2)
expect_true(is.list(contrast_list2))
expect_named(contrast_list2, NULL)
expect_identical(length(contrast_list2), nrow(contrast2))
})
test_that("get_contrast works against an S3 object of class beaver_mcmc, produces an object with correct properties", { # nolint
nb_monotone_incr_new <- readRDS(test_path("fixtures", "nb_monotone_incr_new.rds")) # nolint
expect_failure(expect_s3_class(nb_monotone_incr_new, NA))
expect_s3_class(nb_monotone_incr_new, "data.frame")
load(test_path("fixtures", "nb_indep_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_indep_model_samples_updatedattr, NA))
expect_s3_class(nb_indep_model_samples_updatedattr, "beaver_mcmc")
expect_no_error(
checkmate::assertSubset(
c("covariate_names", "formula"),
names(attributes(nb_indep_model_samples_updatedattr))
)
)
#new_data and contrast both NULL----
expect_error(
get_contrast(
x = nb_indep_model_samples_updatedattr,
new_data = NULL,
contrast = NULL
)
)
#new_data not NULL, contrast NULL----
expect_no_error(
get_contrast(
x = nb_indep_model_samples_updatedattr,
new_data = nb_monotone_incr_new,
contrast = NULL
)
)
expect_invisible(
get_contrast(
x = nb_indep_model_samples_updatedattr,
new_data = nb_monotone_incr_new,
contrast = NULL
)
)
contrast1 <- get_contrast(
x = nb_indep_model_samples_updatedattr,
new_data = nb_monotone_incr_new,
contrast = NULL
)
expect_true(is.matrix(contrast1))
expect_identical(
colnames(contrast1),
attr(nb_indep_model_samples_updatedattr, "covariate_names")
)
expect_identical(nrow(contrast1), nrow(nb_monotone_incr_new))
expect_identical(
ncol(contrast1),
length(attr(nb_indep_model_samples_updatedattr, "covariate_names"))
)
#new_data NULL, contrast not NULL----
expect_no_error(
get_contrast(
x = nb_indep_model_samples_updatedattr,
new_data = NULL,
contrast = matrix(1, 1, 1)
)
)
contrast2 <- get_contrast(
x = nb_indep_model_samples_updatedattr,
new_data = NULL,
contrast = matrix(1, 1, 1)
)
expect_true(is.matrix(contrast2))
expect_identical(
colnames(contrast2),
attr(nb_indep_model_samples_updatedattr, "covariate_names")
)
expect_identical(
ncol(contrast2),
length(attr(nb_indep_model_samples_updatedattr, "covariate_names"))
)
})
test_that("post_mean works against an S3 object of class beaver_mcmc, produces an object with correct properties", { # nolint
load(test_path("fixtures", "nb_indep_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_indep_model_samples_updatedattr, NA))
expect_s3_class(nb_indep_model_samples_updatedattr, "beaver_mcmc")
expect_no_error(
checkmate::assertSubset(
c("covariate_names", "formula", "doses"),
names(attributes(nb_indep_model_samples_updatedattr))
)
)
draws <- draws(nb_indep_model_samples_updatedattr)
contrast <- get_contrast(
x = nb_indep_model_samples_updatedattr,
new_data = NULL,
contrast = matrix(1, 1, 1)
)
expect_no_error(
post_mean(
x = nb_indep_model_samples_updatedattr,
dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
samps = draws,
contrast = contrast,
.contrast_index = 1
)
)
post_mean <- post_mean(
x = nb_indep_model_samples_updatedattr,
dose = attr(nb_indep_model_samples_updatedattr, "doses")[1],
samps = draws,
contrast = contrast,
.contrast_index = 1
)
expect_failure(expect_s3_class(post_mean, NA))
expect_s3_class(post_mean, "data.frame")
expect_identical(
nrow(post_mean),
sum(sapply(nb_indep_model_samples_updatedattr, nrow))
)
expect_failure(expect_named(post_mean, NULL))
expect_identical(
names(post_mean),
c("dose", "value", "iter", ".contrast_index", colnames(contrast))
)
for (i in names(post_mean)) expect_true(is.numeric(post_mean[[i]]))
expect_identical(
post_mean %>%
dplyr::distinct(dose) %>%
dplyr::pull(dose),
attr(nb_indep_model_samples_updatedattr, "doses")[1]
)
expect_identical(
post_mean %>%
dplyr::pull(iter),
draws %>%
dplyr::pull(iter)
)
expect_identical(
post_mean %>%
dplyr::distinct(.contrast_index) %>%
dplyr::pull(.contrast_index),
1
)
expect_identical(
post_mean %>%
dplyr::distinct(!!sym(colnames(contrast))) %>%
dplyr::pull(colnames(contrast)),
contrast %>%
tibble::as_tibble() %>%
dplyr::pull(colnames(contrast))
)
})
test_that("get_intercept works against an S3 object of class beaver_mcmc, produces an object with correct properties", { # nolint
nb_monotone_incr_new <- readRDS(test_path("fixtures", "nb_monotone_incr_new.rds")) # nolint
expect_failure(expect_s3_class(nb_monotone_incr_new, NA))
expect_s3_class(nb_monotone_incr_new, "data.frame")
load(test_path("fixtures", "nb_indep_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_indep_model_samples_updatedattr, NA))
expect_s3_class(nb_indep_model_samples_updatedattr, "beaver_mcmc")
expect_no_error(
checkmate::assertSubset(
c("covariate_names", "formula"),
names(attributes(nb_indep_model_samples_updatedattr))
)
)
#new_data----
expect_no_error(
get_intercept(
mcmc = draws(nb_indep_model_samples_updatedattr),
contrast = get_contrast(
x = nb_indep_model_samples_updatedattr,
new_data = nb_monotone_incr_new,
contrast = NULL
)
)
)
intercept1 <- get_intercept(
mcmc = draws(nb_indep_model_samples_updatedattr),
contrast = get_contrast(
x = nb_indep_model_samples_updatedattr,
new_data = nb_monotone_incr_new,
contrast = NULL
)
)
expect_true(is.matrix(intercept1))
expect_identical(
nrow(intercept1),
sum(sapply(nb_indep_model_samples_updatedattr, nrow))
)
expect_identical(ncol(intercept1), nrow(nb_monotone_incr_new))
expect_identical(
tibble::as_tibble(intercept1) %>%
dplyr::rowwise() %>%
dplyr::summarize(
a = length(unique(dplyr::c_across(cols = dplyr::everything())))
) %>%
dplyr::ungroup() %>%
dplyr::distinct(a) %>%
dplyr::pull(a),
length(attr(nb_indep_model_samples_updatedattr, "covariate_names"))
)
#contrast----
expect_no_error(
get_intercept(
mcmc = draws(nb_indep_model_samples_updatedattr),
contrast = matrix(1, 1, 1)
)
)
intercept2 <- get_intercept(
mcmc = draws(nb_indep_model_samples_updatedattr),
contrast = matrix(1, 1, 1)
)
expect_true(is.matrix(intercept2))
expect_identical(
nrow(intercept2),
sum(sapply(nb_indep_model_samples_updatedattr, nrow))
)
expect_identical(ncol(intercept2), 1L)
})
test_that("select_cols works against an S3 object of class data.frame, produces an object with correct properties", { # nolint
load(test_path("fixtures", "nb_indep_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_indep_model_samples_updatedattr, NA))
expect_s3_class(nb_indep_model_samples_updatedattr, "beaver_mcmc")
expect_no_error(
checkmate::assertSubset(
c("doses"),
names(attributes(nb_indep_model_samples_updatedattr))
)
)
draws <- draws(nb_indep_model_samples_updatedattr)
expect_s3_class(draws, c("tbl_df", "data.frame"))
expect_no_error(
draws %>%
dplyr::mutate(
dose = attr(nb_indep_model_samples_updatedattr, "doses")[1]
) %>%
tibble::add_column(value = rnorm(nrow(.))) %>%
tibble::add_column(.contrast_index = rnorm(nrow(.))) %>%
select_cols()
)
set.seed(1234)
draws1 <- draws %>%
dplyr::mutate(
dose = attr(nb_indep_model_samples_updatedattr, "doses")[1]
) %>%
tibble::add_column(value = rnorm(nrow(.))) %>%
tibble::add_column(.contrast_index = rnorm(nrow(.))) %>%
select_cols()
expect_failure(expect_s3_class(draws1, NA))
expect_s3_class(draws1, c("tbl_df", "data.frame"))
expect_identical(nrow(draws1), nrow(draws))
expect_failure(expect_named(draws1, NULL))
expect_identical(
names(draws1),
c("dose", "value", "iter", ".contrast_index")
)
})
test_that("posterior_g_comp works against an S3 object of class class beaver_mcmc_bma, produces an object with correct properties", { # nolint
nb_monotone_incr_cov <- readRDS(test_path("fixtures", "nb_monotone_incr_cov.rds")) # nolint
expect_failure(expect_s3_class(nb_monotone_incr_cov, NA))
expect_s3_class(nb_monotone_incr_cov, "data.frame")
load(test_path("fixtures", "nb_bma_cov_objects.Rdata"))
expect_failure(expect_s3_class(nb_bma_cov, NA))
expect_s3_class(
nb_bma_cov,
c("beaver_mcmc_bma", "yodel_bma", "beaver_mcmc"),
exact = TRUE
)
#new_data----
#>reference_dose == NULL----
posterior1 <- posterior_g_comp(
x = nb_bma_cov,
doses = attr(nb_bma_cov, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
new_data = nb_monotone_incr_cov
)
expect_true(is.list(posterior1))
expect_named(posterior1, c("stats", "samples"))
expect_failure(expect_s3_class(posterior1$stats, NA))
expect_s3_class(posterior1$stats, "data.frame")
expect_failure(expect_s3_class(posterior1$samples, NA))
expect_s3_class(posterior1$samples, "data.frame")
#>>stats only----
posterior1_stats <- posterior_g_comp(
x = nb_bma_cov,
doses = attr(nb_bma_cov, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = TRUE,
return_samples = FALSE,
new_data = nb_monotone_incr_cov
)
expect_true(is.list(posterior1_stats))
expect_named(posterior1_stats, c("stats", "samples"))
expect_identical(posterior1_stats$stats, posterior1$stats)
expect_true(is.null(posterior1_stats$samples))
#>>samples only----
posterior1_samples <- posterior_g_comp(
x = nb_bma_cov,
doses = attr(nb_bma_cov, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = FALSE,
return_samples = TRUE,
new_data = nb_monotone_incr_cov
)
expect_true(is.list(posterior1_samples))
expect_named(posterior1_samples, c("stats", "samples"))
expect_true(is.null(posterior1_samples$stats))
expect_identical(posterior1_samples$samples, posterior1$samples)
#>reference_dose == [first dose], reference_type == "difference"----
posterior1a <- posterior_g_comp(
x = nb_bma_cov,
doses = attr(nb_bma_cov, "doses"),
reference_dose = attr(nb_bma_cov, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
new_data = nb_monotone_incr_cov,
reference_type = "difference"
)
expect_true(is.list(posterior1a))
expect_named(posterior1a, c("stats", "samples"))
expect_failure(expect_s3_class(posterior1a$stats, NA))
expect_s3_class(posterior1a$stats, "data.frame")
expect_failure(expect_s3_class(posterior1a$samples, NA))
expect_s3_class(posterior1a$samples, "data.frame")
#>reference_dose == [first dose], reference_type == "ratio"----
posterior1b <- posterior_g_comp(
x = nb_bma_cov,
doses = attr(nb_bma_cov, "doses"),
reference_dose = attr(nb_bma_cov, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
new_data = nb_monotone_incr_cov,
reference_type = "ratio"
)
expect_true(is.list(posterior1b))
expect_named(posterior1b, c("stats", "samples"))
expect_failure(expect_s3_class(posterior1b$stats, NA))
expect_s3_class(posterior1b$stats, "data.frame")
expect_failure(expect_s3_class(posterior1b$samples, NA))
expect_s3_class(posterior1b$samples, "data.frame")
# nolint start
# #contrast----
#
# #>reference_dose == NULL----
#
# posterior2 <- posterior_g_comp(
# x = nb_bma_cov,
# doses = attr(nb_bma_cov, "doses"),
# reference_dose = NULL,
# prob = c(.025, .975),
# return_stats = TRUE,
# return_samples = TRUE,
# contrast = matrix(1, 1, 1)
# )
#
# expect_true(is.list(posterior2))
# expect_named(posterior2, c("stats", "samples"))
# expect_failure(expect_s3_class(posterior2$stats, NA))
# expect_s3_class(posterior2$stats, "data.frame")
# expect_failure(expect_s3_class(posterior2$samples, NA))
# expect_s3_class(posterior2$samples, "data.frame")
#
# #>>stats only----
#
# posterior2_stats <- posterior_g_comp(
# x = nb_bma_cov,
# doses = attr(nb_bma_cov, "doses"),
# reference_dose = NULL,
# prob = c(.025, .975),
# return_stats = TRUE,
# return_samples = FALSE,
# contrast = matrix(1, 1, 1)
# )
#
# expect_true(is.list(posterior2_stats))
# expect_named(posterior2_stats, c("stats", "samples"))
# expect_identical(posterior2_stats$stats, posterior2$stats)
# expect_true(is.null(posterior2_stats$samples))
#
# #>>samples only----
#
# posterior2_samples <- posterior_g_comp(
# x = nb_bma_cov,
# doses = attr(nb_bma_cov, "doses"),
# reference_dose = NULL,
# prob = c(.025, .975),
# return_stats = FALSE,
# return_samples = TRUE,
# contrast = matrix(1, 1, 1)
# )
#
# expect_true(is.list(posterior2_samples))
# expect_named(posterior2_samples, c("stats", "samples"))
# expect_true(is.null(posterior2_samples$stats))
# expect_identical(posterior2_samples$samples, posterior2$samples)
#
# #>reference_dose == [first dose], reference_type == "difference"----
#
# posterior2a <- posterior_g_comp(
# x = nb_bma_cov,
# doses = attr(nb_bma_cov, "doses"),
# reference_dose = attr(nb_bma_cov, "doses")[1],
# prob = c(.025, .975),
# return_stats = TRUE,
# return_samples = TRUE,
# contrast = matrix(1, 1, 1),
# reference_type = "difference"
# )
#
# expect_true(is.list(posterior2a))
# expect_named(posterior2a, c("stats", "samples"))
# expect_failure(expect_s3_class(posterior2a$stats, NA))
# expect_s3_class(posterior2a$stats, "data.frame")
# expect_failure(expect_s3_class(posterior2a$samples, NA))
# expect_s3_class(posterior2a$samples, "data.frame")
#
# #>reference_dose == [first dose], reference_type == "ratio"----
#
# posterior2b <- posterior_g_comp(
# x = nb_bma_cov,
# doses = attr(nb_bma_cov, "doses"),
# reference_dose = attr(nb_bma_cov, "doses")[1],
# prob = c(.025, .975),
# return_stats = TRUE,
# return_samples = TRUE,
# contrast = matrix(1, 1, 1),
# reference_type = "ratio"
# )
#
# expect_true(is.list(posterior2b))
# expect_named(posterior2b, c("stats", "samples"))
# expect_failure(expect_s3_class(posterior2b$stats, NA))
# expect_s3_class(posterior2b$stats, "data.frame")
# expect_failure(expect_s3_class(posterior2b$samples, NA))
# expect_s3_class(posterior2b$samples, "data.frame")
# nolint end
})
test_that("posterior_g_comp works against an S3 object of class beaver_mcmc, produces an object with correct properties", { # nolint
skip_on_cran()
nb_monotone_incr_cov <- readRDS(test_path("fixtures", "nb_monotone_incr_cov.rds")) # nolint
expect_failure(expect_s3_class(nb_monotone_incr_cov, NA))
expect_s3_class(nb_monotone_incr_cov, "data.frame")
load(test_path("fixtures", "nb_emax_cov_mcmc+_objects.Rdata"))
expect_failure(expect_s3_class(nb_emax_model_cov_samples_updatedattr, NA))
expect_s3_class(nb_emax_model_cov_samples_updatedattr, "beaver_mcmc")
expect_no_error(
checkmate::assertSubset(
c("covariate_names", "formula", "doses"),
names(attributes(nb_emax_model_cov_samples_updatedattr))
)
)
#new_data----
#>reference_dose == NULL----
posterior1 <- posterior_g_comp(
x = nb_emax_model_cov_samples_updatedattr,
doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
new_data = nb_monotone_incr_cov
)
expect_true(is.list(posterior1))
expect_named(posterior1, c("stats", "samples"))
expect_failure(expect_s3_class(posterior1$stats, NA))
expect_s3_class(posterior1$stats, "data.frame")
expect_failure(expect_s3_class(posterior1$samples, NA))
expect_s3_class(posterior1$samples, "data.frame")
#>>stats only----
posterior1_stats <- posterior_g_comp(
x = nb_emax_model_cov_samples_updatedattr,
doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = TRUE,
return_samples = FALSE,
new_data = nb_monotone_incr_cov
)
expect_true(is.list(posterior1_stats))
expect_named(posterior1_stats, c("stats", "samples"))
expect_identical(posterior1_stats$stats, posterior1$stats)
expect_true(is.null(posterior1_stats$samples))
#>>samples only----
posterior1_samples <- posterior_g_comp(
x = nb_emax_model_cov_samples_updatedattr,
doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
reference_dose = NULL,
prob = c(.025, .975),
return_stats = FALSE,
return_samples = TRUE,
new_data = nb_monotone_incr_cov
)
expect_true(is.list(posterior1_samples))
expect_named(posterior1_samples, c("stats", "samples"))
expect_true(is.null(posterior1_samples$stats))
expect_identical(posterior1_samples$samples, posterior1$samples)
#>reference_dose == [first dose], reference_type == "difference"----
posterior1a <- posterior_g_comp(
x = nb_emax_model_cov_samples_updatedattr,
doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
reference_dose = attr(nb_emax_model_cov_samples_updatedattr, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
new_data = nb_monotone_incr_cov,
reference_type = "difference"
)
expect_true(is.list(posterior1a))
expect_named(posterior1a, c("stats", "samples"))
expect_failure(expect_s3_class(posterior1a$stats, NA))
expect_s3_class(posterior1a$stats, "data.frame")
expect_failure(expect_s3_class(posterior1a$samples, NA))
expect_s3_class(posterior1a$samples, "data.frame")
#>reference_dose == [first dose], reference_type == "ratio"----
posterior1b <- posterior_g_comp(
x = nb_emax_model_cov_samples_updatedattr,
doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
reference_dose = attr(nb_emax_model_cov_samples_updatedattr, "doses")[1],
prob = c(.025, .975),
return_stats = TRUE,
return_samples = TRUE,
new_data = nb_monotone_incr_cov,
reference_type = "ratio"
)
expect_true(is.list(posterior1b))
expect_named(posterior1b, c("stats", "samples"))
expect_failure(expect_s3_class(posterior1b$stats, NA))
expect_s3_class(posterior1b$stats, "data.frame")
expect_failure(expect_s3_class(posterior1b$samples, NA))
expect_s3_class(posterior1b$samples, "data.frame")
# nolint start
# #contrast----
#
# #>reference_dose == NULL----
#
# posterior2 <- posterior_g_comp(
# x = nb_emax_model_cov_samples_updatedattr,
# doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
# reference_dose = NULL,
# prob = c(.025, .975),
# return_stats = TRUE,
# return_samples = TRUE,
# contrast = matrix(1, 1, 1)
# )
#
# expect_true(is.list(posterior2))
# expect_named(posterior2, c("stats", "samples"))
# expect_failure(expect_s3_class(posterior2$stats, NA))
# expect_s3_class(posterior2$stats, "data.frame")
# expect_failure(expect_s3_class(posterior2$samples, NA))
# expect_s3_class(posterior2$samples, "data.frame")
#
# #>>stats only----
#
# posterior2_stats <- posterior_g_comp(
# x = nb_emax_model_cov_samples_updatedattr,
# doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
# reference_dose = NULL,
# prob = c(.025, .975),
# return_stats = TRUE,
# return_samples = FALSE,
# contrast = matrix(1, 1, 1)
# )
#
# expect_true(is.list(posterior2_stats))
# expect_named(posterior2_stats, c("stats", "samples"))
# expect_identical(posterior2_stats$stats, posterior2$stats)
# expect_true(is.null(posterior2_stats$samples))
#
# #>>samples only----
#
# posterior2_samples <- posterior_g_comp(
# x = nb_emax_model_cov_samples_updatedattr,
# doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
# reference_dose = NULL,
# prob = c(.025, .975),
# return_stats = FALSE,
# return_samples = TRUE,
# contrast = matrix(1, 1, 1)
# )
#
# expect_true(is.list(posterior2_samples))
# expect_named(posterior2_samples, c("stats", "samples"))
# expect_true(is.null(posterior2_samples$stats))
# expect_identical(posterior2_samples$samples, posterior2$samples)
#
# #>reference_dose == [first dose], reference_type == "difference"----
#
# posterior2a <- posterior_g_comp(
# x = nb_emax_model_cov_samples_updatedattr,
# doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
# reference_dose = attr(nb_emax_model_cov_samples_updatedattr, "doses")[1],
# prob = c(.025, .975),
# return_stats = TRUE,
# return_samples = TRUE,
# contrast = matrix(1, 1, 1),
# reference_type = "difference"
# )
#
# expect_true(is.list(posterior2a))
# expect_named(posterior2a, c("stats", "samples"))
# expect_failure(expect_s3_class(posterior2a$stats, NA))
# expect_s3_class(posterior2a$stats, "data.frame")
# expect_failure(expect_s3_class(posterior2a$samples, NA))
# expect_s3_class(posterior2a$samples, "data.frame")
#
# #>reference_dose == [first dose], reference_type == "ratio"----
#
# posterior2b <- posterior_g_comp(
# x = nb_emax_model_cov_samples_updatedattr,
# doses = attr(nb_emax_model_cov_samples_updatedattr, "doses"),
# reference_dose = attr(nb_emax_model_cov_samples_updatedattr, "doses")[1],
# prob = c(.025, .975),
# return_stats = TRUE,
# return_samples = TRUE,
# contrast = matrix(1, 1, 1),
# reference_type = "ratio"
# )
#
# expect_true(is.list(posterior2b))
# expect_named(posterior2b, c("stats", "samples"))
# expect_failure(expect_s3_class(posterior2b$stats, NA))
# expect_s3_class(posterior2b$stats, "data.frame")
# expect_failure(expect_s3_class(posterior2b$samples, NA))
# expect_s3_class(posterior2b$samples, "data.frame")
# nolint end
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.