R/localCitations.R

Defines functions localCitations

Documented in localCitations

#' Author local citations
#'
#' It calculates local citations (LCS) of authors and documents of a bibliographic collection.
#'
#' Local citations measure how many times an author (or a document) included in this collection have been cited by the documents also included in the collection.
#'
#' @param M is a bibliographic data frame obtained by the converting function \code{\link{convert2df}}.
#'        It is a data matrix with cases corresponding to manuscripts and variables to Field Tag in the original SCOPUS and Clarivate Analytics WoS file.
#' @param sep is the field separator character. This character separates citations in each string of CR column of the bibliographic data frame. The default is \code{sep = ";"}.
#' @param fast.search is logical. If true, the function calculates local citations only for 25 percent top cited documents.
#' @param verbose is a logical.  If TRUE, results are printed on screen.
#' @return an object of \code{class} "list" containing author local citations and document local citations.
#'
#'
#' @examples
#'
#' data(scientometrics, package = "bibliometrixData")
#'
#' CR <- localCitations(scientometrics, sep = ";")
#'
#' CR$Authors[1:10, ]
#' CR$Papers[1:10, ]
#'
#' @seealso \code{\link{citations}} function for citation frequency distribution.
#' @seealso \code{\link{biblioAnalysis}} function for bibliometric analysis.
#' @seealso \code{\link{summary}} to obtain a summary of the results.
#' @seealso \code{\link{plot}} to draw some useful plots of the results.
#'
#' @export

localCitations <- function(M, fast.search = FALSE, sep = ";", verbose = FALSE) {
  M$TC[is.na(M$TC)] <- 0
  if (isTRUE(fast.search)) {
    loccit <- quantile(as.numeric(M$TC), 0.75, na.rm = TRUE)
  } else {
    loccit <- 1
  }

  H <- histNetwork(M, min.citations = loccit, sep = sep, network = FALSE, verbose = verbose)
  LCS <- H$histData
  M <- H$M
  rm(H)
  AU <- strsplit(M$AU, split = ";")
  n <- lengths(AU)

  df <- data.frame(AU = unlist(AU), LCS = rep(M$LCS, n))
  AU <- aggregate(df$LCS, by = list(df$AU), FUN = "sum")
  names(AU) <- c("Author", "LocalCitations")
  AU <- AU[order(-AU$LocalCitations), ]

  if ("SR" %in% names(M)) {
    LCS <- data.frame(Paper = M$SR, DOI = M$DI, Year = M$PY, LCS = M$LCS, GCS = M$TC)
    LCS <- LCS[order(-LCS$LCS), ]
  }
  CR <- list(Authors = AU, Papers = LCS, M = M)
  return(CR)
}

Try the bibliometrix package in your browser

Any scripts or data that you put into this service are public.

bibliometrix documentation built on June 8, 2025, 10:58 a.m.