R/normalizeCItationScore.R

Defines functions normalizeCitationScore

Documented in normalizeCitationScore

utils::globalVariables(c(
  "PY", "LCS", "TC", "SR", "NGCS", "NLCS", "Author",
  "year", "SO"
))
#' Calculate the normalized citation score metric
#'
#' It calculates the normalized citation score for documents, authors and sources using both global and local citations.
#'
#' The document Normalized Citation Score (NCS) of a document is calculated by dividing the actual count of citing items by the expected
#' citation rate for documents with the same year of publication.
#'
#' The MNCS of a set of documents, for example the collected works of an individual, or published on a journal, is the average of the NCS values for all the documents in the set.
#'
#' The NGCS is the NCS calculated using the global citations (total citations that a document received considering the whole bibliographic database).
#'
#' The NLCS is the NCS calculated using the local citations (total citations that a document received from a set of documents included in the same collection).
#'
#'
#'
#' @param M is a bibliographic data frame obtained by \code{\link{convert2df}} function.
#' @param field is a character. It indicates the unit of analysis on which calculate the NCS. It can be equal to \code{field = c("documents", "authors", "sources")}. Default is \code{field = "documents"}.
#' @param impact.measure is a character. It indicates the impact measure used to rank cluster elements (documents, authors or sources).
#' It can be \code{impact.measure = c("local", "global")}.\\
#' With \code{impact.measure = "local"}, \link{normalizeCitationScore} calculates elements impact using the Normalized Local Citation Score while
#' using \code{impact.measure = "global"}, the function uses the Normalized Global Citation Score to measure elements impact.
#' @return a dataframe.
#'
#'
#'
#' @examples
#' \dontrun{
#' data(management, package = "bibliometrixData")
#' NCS <- normalizeCitationScore(management, field = "authors", impact.measure = "local")
#' }
#'
#' @export
normalizeCitationScore <- function(M, field = "documents", impact.measure = "local") {
  if (!(field %in% c("documents", "authors", "sources"))) {
    cat('\nfield argument is incorrect.\n\nPlease select one of the following choices: "documents", "authors", "sources"\n\n')
    return(NA)
  }
  M$TC <- as.numeric(M$TC)
  M$PY <- as.numeric(M$PY)

  if (impact.measure == "local") {
    log <- capture.output(M <- localCitations(M, fast.search = FALSE, sep = ";")$M)
  } else {
    M$LCS <- 0
  }

  M <- M %>%
    group_by(PY) %>%
    mutate(
      LCS = replace(LCS, LCS == 0, 1),
      NGCS = TC / mean(TC, na.rm = TRUE),
      NLCS = LCS / mean(LCS, na.rm = TRUE)
    ) %>%
    ungroup() %>%
    as.data.frame()


  switch(field,
    documents = {
      #### Documents Impact by Normalized Local Citations ####
      NCS <- M %>%
        select(SR, PY, NGCS, NLCS, TC, LCS) %>%
        rename(
          MNGCS = NGCS,
          MNLCS = NLCS,
          LC = LCS
        ) %>%
        rename(documents = SR) %>%
        as.data.frame()
    },
    authors = {
      #### Authors Impact by Normalized Local Citations ####
      AU <- names(tableTag(M, "AU"))
      df <- data.frame("Author" = "NA", "SR" = NA, "year" = NA, "TC" = NA, "LCS" = NA, "NGCS" = NA, "NLCS" = NA)

      if (!("DI" %in% names(M))) {
        M$DI <- "NA"
      }
      for (i in 1:length(AU)) {
        ind <- which(regexpr(AU[i], M$AU) > -1)
        dfAU <- data.frame(
          "Author" = rep(AU[i], length(ind)), "SR" = M$PY[ind], "year" = M$PY[ind],
          "TC" = M$TC[ind], "LCS" = M$LCS[ind], "NGCS" = M$NGCS[ind],
          "NLCS" = M$NLCS[ind]
        )
        df <- rbind(df, dfAU)
      }
      df <- df[-1, ]

      NCS <- df %>%
        group_by(Author) %>%
        summarize(
          NP = length(year),
          MNGCS = mean(NGCS, na.rm = TRUE),
          MNLCS = mean(NLCS, na.rm = TRUE),
          TC = mean(TC, na.rm = TRUE),
          LC = mean(LCS, na.rm = TRUE)
        ) %>%
        rename(authors = Author) %>%
        as.data.frame()
    },
    sources = {
      #### Source Impact by Normalized Local Citations ####
      NCS <- M %>%
        group_by(SO) %>%
        summarize(
          NP = length(PY),
          MNGCS = mean(NGCS, na.rm = TRUE),
          MNLCS = mean(NLCS, na.rm = TRUE),
          TC = mean(TC, na.rm = TRUE),
          LC = mean(LCS, na.rm = TRUE)
        ) %>%
        rename(sources = SO) %>%
        as.data.frame()
    }
  )

  if (impact.measure == "global") {
    NCS <- NCS[, -c(4, 6)]
  } else {
    NCS$MNLCS[is.na(NCS$MNLCS)] <- 0
  }

  return(NCS)
}

Try the bibliometrix package in your browser

Any scripts or data that you put into this service are public.

bibliometrix documentation built on June 8, 2025, 10:58 a.m.