R/threeFieldsPlot.R

Defines functions meltx threeFieldsPlot

Documented in threeFieldsPlot

utils::globalVariables(c("level"))
#' Three Fields Plot
#'
#' Visualize the main items of three fields (e.g. authors, keywords, journals), and how they are related through a Sankey diagram.
#' 
#' @param M is a bibliographic data frame obtained by the converting function \code{\link{convert2df}}.
#'        It is a data matrix with cases corresponding to manuscripts and variables to Field Tag in the original SCOPUS and Clarivate Analytics WoS file.
#' @param fields is a character vector. It indicates the fields to analyze using the standard WoS field tags. 
#'        Default is \code{fields = c("AU","DE", "SO")}.
#' @param n is a integer vector. It indicates how many items to plot, for each of the three fields. 
#'        Default is \code{n = c(20, 20, 20)}
#' @return a sankeyPlot
#' 
#'
#' @examples
#' 
#' #data(scientometrics, package = "bibliometrixData")
#' 
#' #threeFieldsPlot(scientometrics, fields=c("DE","AU","CR"),n=c(20,20,20))
#'
#' @export
#' 
threeFieldsPlot <- function(M, fields=c("AU","DE","SO"),n=c(20,20,20)){
  
  if ("CR_SO" %in% fields){
    M=metaTagExtraction(M,"CR_SO")
  }
  if ("AU_UN" %in% fields){
    M=metaTagExtraction(M,"AU_UN")
  }
  if ("AB_TM" %in% fields){
    M=termExtraction(M,"AB")
  }
  if ("TI_TM" %in% fields){
    M=termExtraction(M,"TI")
  }
  if ("AU_CO" %in% fields){
    M=metaTagExtraction(M,"AU_CO")
  }
  
  
  Binary=rep(FALSE,3)
  ind=which(fields %in% "CR")
  if (length(ind)>0) Binary[ind]=TRUE
  
  ### Document x Attribute matrix Field LEFT
  WL=cocMatrix(M,fields[1], binary=Binary[1], n=n[1])
  n1=min(n[1],ncol(WL))
  #TopL=names(sort(Matrix::colSums(WL),decreasing = TRUE))[1:n1]
  TopL <- colnames(WL)
  #WL=WL[,TopL]
  
  ### Document x Attribute matrix Field MIDDLE
  WM=cocMatrix(M,fields[2], binary=Binary[2],n=n[2])
  n2=min(n[2],ncol(WM))
  #TopM=names(sort(Matrix::colSums(WM),decreasing = TRUE))[1:n2]
  TopM <- colnames(WM)
  #WM=WM[,TopM]
  
  ### Document x Attribute matrix Field RIGHT
  WR=cocMatrix(M,fields[3], binary=Binary[3],n=n[3])
  n3=min(n[3],ncol(WR))
  #TopR=names(sort(Matrix::colSums(WR),decreasing = TRUE))[1:n3]
  TopR <- colnames(WR)
  #WR=WR[,TopR]
  
  ### Co-Occurrence Matrices
  LM=Matrix::crossprod(WL,WM)
  MR=Matrix::crossprod(WM,WR)

  row.names(LM)=1:n1
  colnames(LM)=row.names(MR)=(n1+1):(n2+n1)
  colnames(MR)=(n2+n1+1):(n1+n2+n3)
  
  LMm=meltx(as.matrix(LM))
  LMm$group=NA
  MRm=meltx(as.matrix(MR))
  MRm$group=NA
  
  Edges <- rbind(LMm,MRm)
  Edges$Var1 <- as.numeric(Edges$Var1)
  Edges$Var2 <- as.numeric(Edges$Var2)
  names(Edges)=c("from","to","Value","group")
  Edges <- Edges[!is.na(Edges$to) & !is.na(Edges$from),]
  Edges$from=Edges$from-1
  Edges$to=Edges$to-1
  Edges <- Edges[,-4]
  
  Nodes=tolower(c(TopL,TopM,TopR))
  
  Nodes=data.frame(Nodes=Nodes,
                   group=c(rep(fields[1],length(TopL)),rep(fields[2],length(TopM)),rep(fields[3],length(TopR))),
                   level=c(rep(1,length(TopL)),rep(2,length(TopM)),rep(3,length(TopR))))
  
  
  min.flow=1
  names(Edges)[3]="weight"
  Edges=Edges[Edges$weight>=min.flow,]
  # ind=which(!((0:(sum(n)-1)) %in% c(Edges$from,Edges$to)))
  # Nodes[ind,]=c("","")

  ###########
  Kx <- length(table(Nodes$group))
  Ky <- nrow(Nodes)
  Nodes <-Nodes %>% 
    #mutate(coordX=factor(group, labels = seq(from= 0, to= 1, by= 1/(Kx-0.8)))) %>%  # before: seq(from= 0, to= 1, by= 1/(Kx-1))
    mutate(
      coordX=rep(seq(from= 0, to= 1, by= 1/(Kx-0.8)),as.numeric(table(level))),
      coordY= rep(0.1, Ky))
  
  colornodes <- c("#9E0142", "#D53E4F", "#F46D43", "#FDAE61", "#FEE08B", "#E6F598", "#ABDDA4", "#66C2A5", "#3288BD", "#5E4FA2")         
  Nodes$color <- colorRampPalette(colornodes)(nrow(Nodes))
  Nodes$id <- (1:nrow(Nodes))-1
  
  ## identify and remove nodes with empty edges
  ind <- setdiff(Nodes$id,unique(c(Edges$from,Edges$to)))
  if(length(ind)>0) {
    Nodes <- Nodes[-(ind+1),]
    Nodes$idnew <- (1:nrow(Nodes))-1
    ## replace old edge ids with new ones
    for (i in 1:nrow(Nodes)){
      old <- Nodes$id[i]
      new <- Nodes$idnew[i] 
      Edges$from[Edges$from==old] <- new
      Edges$to[Edges$to==old] <- new
    }
    }
   
  ## Build sankey plot
  m <- list(
    l = 50,
    r = 50,
    b = 100,
    t = 100,
    pad = 2
  )
  
  plotly::plot_ly(
    type = "sankey",
    arrangement = "snap",
    node = list(
      label = Nodes$Nodes,
      x = Nodes$coordX,
      y = Nodes$coordY,
      #color = "black",
      color = Nodes$color
      #colors = colorRampPalette(brewer.pal(10,"Spectral"))(nrow(Nodes)),
      ,pad = 4
      ), # 10 Pixel
    link = list(
      source = Edges$from,
      target = Edges$to,
      value = Edges$weight
      #,color = adjustcolor(Edges$color,alpha.f=0.4)
      )
  ) %>% 
    layout(margin = m) %>%
    plotly::add_annotations(x = Nodes$coordX,
                            y = 1.08,
                            text = factor(Nodes$group),
                            showarrow=F,xanchor = "center",
                            font = list(color = 'Dark',
                                        family = "TimesNewRoman",
                                        size = 14)) %>% 
    config(displaylogo = FALSE,
           modeBarButtonsToRemove = c(
             'toImage',
             'sendDataToCloud',
             'pan2d', 
             'select2d', 
             'lasso2d',
             'toggleSpikelines',
             'hoverClosestCartesian',
             'hoverCompareCartesian'
           )) 
  
  # networkD3::sankeyNetwork(Links = Edges, Nodes = Nodes, Source = "from", Target = "to", 
  #                          NodeID = "Nodes", Value = "weight", width = width,height=height,fontSize = 12,
  #                          nodeWidth = 30,  NodeGroup = "group",LinkGroup = "group")
  
}



## function to melt data
meltx <- function(LM) {
  var1 <- rep((1:nrow(LM)), ncol(LM))
  var2 <- sort(var1)
  LMM <-
    data.frame(
      Var1 = rownames(LM)[var1],
      Var2 = colnames(LM)[var2],
      value = matrix(LM, length(LM), 1)
    )
  return(LMM)
}

Try the bibliometrix package in your browser

Any scripts or data that you put into this service are public.

bibliometrix documentation built on July 3, 2024, 5:07 p.m.