R/NI.Dorf.OTC1.R

Defines functions NI.Dorf.OTC1

# Start  NI.Dorf.OTC1() function
###################################################################

# Brianna Hitt - 4-17-17
# Updated: Brianna Hitt - 6-20-18

# Brianna Hitt - 04.02.2020
# Changed cat() to message()

NI.Dorf.OTC1 <- function(p, Se, Sp, group.sz, obj.fn, weights = NULL, 
                         updateProgress = NULL, trace = TRUE, 
                         print.time = TRUE) {
  
  start.time <- proc.time()
  
  set.of.I <- group.sz
  save.it <- matrix(data = NA, nrow = length(set.of.I), ncol = 15)
  count <- 1
  
  for (I in set.of.I) {
    # generate a probability vector for homogeneous population
    p.vec <- rep(x = p[1], times = I)
    
    # calculate descriptive measures for two-stage hierarchical testing
    save.info <- hierarchical.desc2(p = p.vec, se = Se, sp = Sp, 
                                    I2 = NULL, order.p = FALSE)
    
    # extract ET, PSe, PSp and calculate the MAR function
    ET <- save.info$ET
    PSe.vec <- save.info$individual.testerror$pse.vec
    PSp.vec <- save.info$individual.testerror$psp.vec
    if ("MAR" %in% obj.fn) {
      MAR <- MAR.func(ET = ET, p.vec = p.vec, 
                      PSe.vec = PSe.vec, PSp.vec = PSp.vec)
    } else {MAR <- NA}
    
    # for non-informative Dorfman (two-stage hierarchical) testing, 
    # all individuals have the same testing accuracy measures
    group.testerror <- save.info$group.testerror
    names(group.testerror) <- NULL
    PSe <- group.testerror[1]
    PSp <- group.testerror[2]
    PPPV <- group.testerror[3]
    PNPV <- group.testerror[4]
    
    # for each row in the matrix of weights, calculate the GR function
    if (is.null(dim(weights))) {
      GR1 <- NA
      GR2 <- NA
      GR3 <- NA
      GR4 <- NA
      GR5 <- NA
      GR6 <- NA
    } else {
      GR1 <- GR.func(ET = ET, p.vec = p.vec, 
                     PSe.vec = PSe.vec, PSp.vec = PSp.vec, 
                     D1 = weights[1,1], D2 = weights[1,2])
      if (dim(weights)[1] >= 2) {
        GR2 <- GR.func(ET = ET, p.vec = p.vec, 
                       PSe.vec = PSe.vec, PSp.vec = PSp.vec, 
                       D1 = weights[2,1], D2 = weights[2,2])
      } else {GR2 <- NA}
      if (dim(weights)[1] >= 3) {
        GR3 <- GR.func(ET = ET, p.vec = p.vec, 
                       PSe.vec = PSe.vec, PSp.vec = PSp.vec, 
                       D1 = weights[3,1], D2 = weights[3,2])
      } else {GR3 <- NA}
      if (dim(weights)[1] >= 4) {
        GR4 <- GR.func(ET = ET, p.vec = p.vec, 
                       PSe.vec = PSe.vec, PSp.vec = PSp.vec, 
                       D1 = weights[4,1], D2 = weights[4,2])
      } else {GR4 <- NA}
      if (dim(weights)[1] >= 5) {
        GR5 <- GR.func(ET = ET, p.vec = p.vec, 
                       PSe.vec = PSe.vec, PSp.vec = PSp.vec, 
                       D1 = weights[5,1], D2 = weights[5,2])
      } else {GR5 <- NA}
      if (dim(weights)[1] >= 6) {
        GR6 <- GR.func(ET = ET, p.vec = p.vec, 
                       PSe.vec = PSe.vec, PSp.vec = PSp.vec, 
                       D1 = weights[6,1], D2 = weights[6,2])
      } else {GR6 <- NA}
    }
    
    save.it[count,] <- c(p[1], I, ET, ET / I, MAR, GR1 / I, GR2 / I, 
                         GR3 / I, GR4 / I, GR5 / I, GR6 / I, 
                         PSe, PSp, PPPV, PNPV)
    
    if (is.function(updateProgress)) {
      updateText <- paste0("Initial Pool Size = ", I)
      updateProgress(value = count / (length(set.of.I) + 1), 
                     detail = updateText)
    }
    
    # print progress, if trace == TRUE
    if (trace) {
      cat("Initial Group Size = ", I, "\n", sep = "")
    }
    
    count <- count + 1
  }
  
  # save the results for each initial group size
  if (length(set.of.I) == 1) {
    configs <- NA
  } else {
    if (obj.fn[1] == "ET") {
      configs <- as.matrix(save.it[, c(1:3,4,12:ncol(save.it))])[order(save.it[,4]),]
    } else if (obj.fn[1] == "MAR") {
      configs <- as.matrix(save.it[, c(1:3,5,12:ncol(save.it))])[order(save.it[,5]),]
    } else if (obj.fn[1] == "GR") {
      configs <- as.matrix(save.it[, c(1:3,6,12:ncol(save.it))])[order(save.it[,6]),]
    }
    
    colnames(configs) <- c("p", "I", "ET", "value", 
                           "PSe", "PSp", "PPPV", "PNPV")
    configs <- convert.config(algorithm = "D2", results = configs)
  }
  
  # find the testing configuration with the minimum value, for each objective function
  result.ET <- save.it[save.it[,4] == min(save.it[,4]), 
                       c(1:3,4,12:ncol(save.it))]
  result.MAR <- save.it[save.it[,5] == min(save.it[,5]), 
                        c(1:3,5,12:ncol(save.it))]
  result.GR1 <- save.it[save.it[,6] == min(save.it[,6]), 
                        c(1:3,6,12:ncol(save.it))]
  result.GR2 <- save.it[save.it[,7] == min(save.it[,7]), 
                        c(1:3,7,12:ncol(save.it))]
  result.GR3 <- save.it[save.it[,8] == min(save.it[,8]), 
                        c(1:3,8,12:ncol(save.it))]
  result.GR4 <- save.it[save.it[,9] == min(save.it[,9]), 
                        c(1:3,9,12:ncol(save.it))]
  result.GR5 <- save.it[save.it[,10] == min(save.it[,10]), 
                        c(1:3,10,12:ncol(save.it))]
  result.GR6 <- save.it[save.it[,11] == min(save.it[,11]), 
                        c(1:3,11,12:ncol(save.it))]
  
  p.vec.ET <- rep(x = result.ET[1], times = result.ET[2])
  if ("MAR" %in% obj.fn) {
    p.vec.MAR <- rep(x = result.MAR[1], times = result.MAR[2])
  } else {p.vec.MAR <- NA}
  if (is.null(dim(weights))) {
    p.vec.GR1 <- NA
    p.vec.GR2 <- NA
    p.vec.GR3 <- NA
    p.vec.GR4 <- NA
    p.vec.GR5 <- NA
    p.vec.GR6 <- NA
  } else {
    p.vec.GR1 <- rep(x = result.GR1[1], times = result.GR1[2])
    if (dim(weights)[1] >= 2) {
      p.vec.GR2 <- rep(x = result.GR2[1], times = result.GR2[2])
    } else {p.vec.GR2 <- NA}
    if (dim(weights)[1] >= 3) {
      p.vec.GR3 <- rep(x = result.GR3[1], times = result.GR3[2])
    } else {p.vec.GR3 <- NA}
    if (dim(weights)[1] >= 4) {
      p.vec.GR4 <- rep(x = result.GR4[1], times = result.GR4[2])
    } else {p.vec.GR4 <- NA}
    if (dim(weights)[1] >= 5) {
      p.vec.GR5 <- rep(x = result.GR5[1], times = result.GR5[2])
    } else {p.vec.GR5 <- NA}
    if (dim(weights)[1] >= 6) {
      p.vec.GR6 <- rep(x = result.GR6[1], times = result.GR6[2])
    } else {p.vec.GR6 <- NA}
  }
  
  # put accuracy measures in a matrix for easier display of results
  acc.ET <- matrix(data = result.ET[5:8], nrow = 1, ncol = 4, 
                   dimnames = list(NULL, c("PSe", "PSp", "PPPV", "PNPV")))
  acc.MAR <- matrix(data = result.MAR[5:8], nrow = 1, ncol = 4, 
                    dimnames = list(NULL, c("PSe", "PSp", "PPPV", "PNPV")))
  acc.GR1 <- matrix(data = result.GR1[5:8], nrow = 1, ncol = 4, 
                    dimnames = list(NULL, c("PSe", "PSp", "PPPV", "PNPV")))
  acc.GR2 <- matrix(data = result.GR2[5:8], nrow = 1, ncol = 4, 
                    dimnames = list(NULL, c("PSe", "PSp", "PPPV", "PNPV")))
  acc.GR3 <- matrix(data = result.GR3[5:8], nrow = 1, ncol = 4, 
                    dimnames = list(NULL, c("PSe", "PSp", "PPPV", "PNPV")))
  acc.GR4 <- matrix(data = result.GR4[5:8], nrow = 1, ncol = 4, 
                    dimnames = list(NULL, c("PSe", "PSp", "PPPV", "PNPV")))
  acc.GR5 <- matrix(data = result.GR5[5:8], nrow = 1, ncol = 4, 
                    dimnames = list(NULL, c("PSe", "PSp", "PPPV", "PNPV")))
  acc.GR6 <- matrix(data = result.GR6[5:8], nrow = 1, ncol = 4, 
                    dimnames = list(NULL, c("PSe", "PSp", "PPPV", "PNPV")))
  
  
  # create a list of results for each objective function
  opt.ET <- list("OTC" = list("Stage1" = result.ET[2]), 
                 "p.vec" = p.vec.ET, "ET" = result.ET[3], 
                 "value" = result.ET[4], "Accuracy" = acc.ET)
  opt.MAR <- list("OTC" = list("Stage1" = result.MAR[2]), 
                  "p.vec" = p.vec.MAR, "ET" = result.MAR[3], 
                  "value" = result.MAR[4], "Accuracy" = acc.MAR)
  opt.GR1 <- list("OTC" = list("Stage1" = result.GR1[2]), 
                  "p.vec" = p.vec.GR1, "ET" = result.GR1[3], 
                  "value" = result.GR1[4], "Accuracy" = acc.GR1)
  opt.GR2 <- list("OTC" = list("Stage1" = result.GR2[2]), 
                  "p.vec" = p.vec.GR2, "ET" = result.GR2[3], 
                  "value" = result.GR2[4], "Accuracy" = acc.GR2)
  opt.GR3 <- list("OTC" = list("Stage1" = result.GR3[2]), 
                  "p.vec" = p.vec.GR3, "ET" = result.GR3[3], 
                  "value" = result.GR3[4], "Accuracy" = acc.GR3)
  opt.GR4 <- list("OTC" = list("Stage1" = result.GR4[2]), 
                  "p.vec" = p.vec.GR4, "ET" = result.GR4[3], 
                  "value" = result.GR4[4], "Accuracy" = acc.GR4)
  opt.GR5 <- list("OTC" = list("Stage1" = result.GR5[2]), 
                  "p.vec" = p.vec.GR5, "ET" = result.GR5[3], 
                  "value" = result.GR5[4], "Accuracy" = acc.GR5)
  opt.GR6 <- list("OTC" = list("Stage1" = result.GR6[2]), 
                  "p.vec" = p.vec.GR6, "ET" = result.GR6[3], 
                  "value" = result.GR6[4], "Accuracy" = acc.GR6)
  
  # create input accuracy value matrices for output display
  Se.display <- matrix(data = Se, nrow = 1, ncol = 2, 
                       dimnames = list(NULL, "Stage" = 1:2))
  Sp.display <- matrix(data = Sp, nrow = 1, ncol = 2, 
                       dimnames = list(NULL, "Stage" = 1:2))
  
  # create a list of results, including all objective functions
  opt.all <- list("opt.ET" = opt.ET, "opt.MAR" = opt.MAR, 
                  "opt.GR1" = opt.GR1, "opt.GR2" = opt.GR2,
                  "opt.GR3" = opt.GR3, "opt.GR4" = opt.GR4, 
                  "opt.GR5" = opt.GR5, "opt.GR6" = opt.GR6)
  # remove any objective functions not requested by the user
  opt.req <- Filter(function(x) !is.na(x$ET), opt.all)
  
  # print time elapsed, if print.time == TRUE
  if (print.time) {
    time.it(start.time)
  }
  
  inputs <- list("algorithm" = "Non-informative two-stage hierarchical testing",
                 "prob" = p, "Se" = Se.display, "Sp" = Sp.display)
  res <- c(inputs, opt.req)
  res[["Configs"]] <- configs
  res
}

###################################################################

Try the binGroup2 package in your browser

Any scripts or data that you put into this service are public.

binGroup2 documentation built on Nov. 14, 2023, 9:06 a.m.