Nothing
       sil.score <- function (mat, nb.clus = c(2:13), nb.run = 100, iter.max = 1000, method = "euclidean") {
  sil.mean <- numeric()
  for (i in nb.clus) {
    avg.width <- numeric()
    j <- 1
    while (j <= nb.run) {
      cluster <- Kmeans(mat, i, iter.max = iter.max, method = method)$cluster
      len <- length(unique(cluster))
      #Kmeans may not return k specified clusters
      if (i == len) {
	#get silhouette for the same method
	silhouette <- silhouette(cluster, dist(mat, method))
	#get total mean of silhouette widths
	avg.width[j] <- as.numeric(summary(silhouette)[4])
	j <- j + 1
      }
    }
    #compute mean for each nb.clus
    sil.mean[i] <- mean(avg.width)
  }
return(sil.mean)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.