Nothing
## SETUP
set.seed(123)
n = 100
# define a function to simulate from a gaussian copula
# first margin is zero-inflated negative binomial (zinb)
# second margin is zero-inflated poisson (zip)
# Note: marginal distributions are hard-coded in function, including
# inverse dispersion parameter for zinb.
gen = function(n, b1, b2, g1, g2, dep) {
k1 = length(b1)
k2 = length(b2)
X1 = cbind(1, matrix(rbinom(n * (k1 - 1), 1, .5), ncol = k1 - 1))
X2 = cbind(1, matrix(rexp(n * (k2 - 1), 3), ncol = k2 - 1))
lam1 = exp(X1 %*% b1)
lam2 = exp(X2 %*% b2)
Z1 = cbind(1, matrix(runif(n * (k1 - 1), -1, 1), ncol = k1 - 1))
Z2 = cbind(1, matrix(rnorm(n * (k2 - 1)), ncol = k2 - 1))
psi1 = plogis(Z1 %*% g1)
psi2 = plogis(Z2 %*% g2)
norm_vars = MASS::mvrnorm(
n,
mu = c(0, 0),
Sigma = matrix(c(1, dep, dep, 1), ncol =2)
)
U = pnorm(norm_vars)
y1 = qzinb(U[, 1],
mu = lam1,
psi = psi1,
size = .3)
y2 = qzip(U[, 2],
lambda = lam2,
psi = psi2)
dat = data.frame(
X1 = X1[, -1],
X2 = X2[, -1],
Z1 = Z1[, -1],
Z2 = Z2[, -1],
y1,
y2,
lam1,
lam2,
psi1,
psi2
)
return(dat)
}
# define parameters
b1 = c(1, -2, 3)
b2 = c(-1, 3, 1)
g1 = c(2, -1.5, 2)
g2 = c(-1, -3.75, 1.25)
rho = .5
# generate data
dat = gen(n, b1, b2, g1, g2, rho)
f1 = y1 ~ X1.1 + X1.2 | Z1.1 + Z1.2
f2 = y2 ~ X2.1 + X2.2 | Z2.1 + Z2.2
## END SETUP
# estimate model
mod = bizicount(f1, f2, dat, cop = "g", margins = c("zinb", "zip"), keep=TRUE)
# diagnose model with DHARMa
# see end for simulate.bizicount example.
dharm = make_DHARMa(mod, nsim = 100)
lapply(dharm, DHARMa::testResiduals)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.