Nothing
#############################################################################!
# MODELS ####
#############################################################################!
.model_imm <-
function(resp_error = NULL, nt_features = NULL, nt_distances = NULL,
set_size = NULL, regex = FALSE, version = "full", links = NULL,
call = NULL, ...) {
out <- structure(
list(
resp_vars = nlist(resp_error),
other_vars = nlist(nt_features, nt_distances, set_size),
domain = "Visual working memory",
task = "Continuous reproduction",
name = "Interference measurement model by Oberauer and Lin (2017).",
version = version,
citation = glue(
"Oberauer, K., & Lin, H.Y. (2017). An interference model \\
of visual working memory. Psychological Review, 124(1), 21-59"
),
requirements = glue(
'- The response vairable should be in radians and \\
represent the angular error relative to the target
- The non-target features should be in radians and be \\
centered relative to the target'
),
parameters = list(
mu1 = glue(
"Location parameter of the von Mises distribution for memory \\
responses (in radians). Fixed internally to 0 by default."
),
kappa = "Concentration parameter of the von Mises distribution",
a = "General activation of memory items",
c = "Context activation",
s = "Spatial similarity gradient"
),
links = list(
mu1 = "tan_half",
kappa = "log",
a = "log",
c = "log",
s = "log"
),
fixed_parameters = list(mu1 = 0, mu2 = 0, kappa2 = -100),
default_priors = list(
mu1 = list(main = "student_t(1, 0, 1)"),
kappa = list(main = "normal(2, 1)", effects = "normal(0, 1)"),
a = list(main = "normal(0, 1)", effects = "normal(0, 1)"),
c = list(main = "normal(0, 1)", effects = "normal(0, 1)"),
s = list(main = "normal(0, 1)", effects = "normal(0, 1)")
),
void_mu = FALSE
),
# attributes
regex = regex,
regex_vars = c('nt_features', 'nt_distances'),
class = c("bmmodel", "circular", "non_targets", "imm", paste0('imm_',version)),
call = call
)
# add version specific information
if (version == "abc") {
out$parameters$s <- NULL
out$links$s <- NULL
out$default_priors$s <- NULL
attributes(out)$regex_vars <- c('nt_features')
} else if (version == "bsc") {
out$parameters$a <- NULL
out$links$a <- NULL
out$default_priors$a <- NULL
}
out$links[names(links)] <- links
out
}
# user facing alias
#' @title `r .model_imm()$name`
#' @description Three versions of the `r .model_imm()$name` - the full, bsc, and abc.
#' `IMMfull()`, `IMMbsc()`, and `IMMabc()` are deprecated and will be removed in the future.
#' Please use `imm(version = 'full')`, `imm(version = 'bsc')`, or `imm(version = 'abc')` instead.
#'
#' @name imm
#' @details `r model_info(.model_imm(), components =c('domain', 'task', 'name', 'citation'))`
#' #### Version: `full`
#' `r model_info(.model_imm(version = "full"), components = c('requirements', 'parameters', 'fixed_parameters', 'links', 'prior'))`
#' #### Version: `bsc`
#' `r model_info(.model_imm(version = "bsc"), components = c('requirements', 'parameters', 'fixed_parameters', 'links', 'prior'))`
#' #### Version: `abc`
#' `r model_info(.model_imm(version = "abc"), components =c('requirements', 'parameters', 'fixed_parameters', 'links', 'prior'))`
#'
#' Additionally, all imm models have an internal parameter that is fixed to 0 to
#' allow the model to be identifiable. This parameter is not estimated and is not
#' included in the model formula. The parameter is:
#'
#' - b = "Background activation (internally fixed to 0)"
#'
#' @param resp_error The name of the variable in the provided dataset containing
#' the response error. The response Error should code the response relative to
#' the to-be-recalled target in radians. You can transform the response error
#' in degrees to radian using the `deg2rad` function.
#' @param nt_features A character vector with the names of the non-target
#' variables. The non_target variables should be in radians and be centered
#' relative to the target. Alternatively, if regex=TRUE, a regular
#' expression can be used to match the non-target feature columns in the
#' dataset.
#' @param nt_distances A vector of names of the columns containing the distances
#' of non-target items to the target item. Alternatively, if regex=TRUE, a regular
#' expression can be used to match the non-target distances columns in the
#' dataset. Only necessary for the `bsc` and `full` versions.
#' @param set_size Name of the column containing the set size variable (if
#' set_size varies) or a numeric value for the set_size, if the set_size is
#' fixed.
#' @param regex Logical. If TRUE, the `nt_features` and `nt_distances` arguments
#' are interpreted as a regular expression to match the non-target feature
#' columns in the dataset.
#' @param version Character. The version of the IMM model to use. Can be one of
#' `full`, `bsc`, or `abc`. The default is `full`.
#' @param ... used internally for testing, ignore it
#' @return An object of class `bmmodel`
#' @keywords bmmodel
#' @examplesIf isTRUE(Sys.getenv("BMM_EXAMPLES"))
#' # load data
#' data <- oberauer_lin_2017
#'
#' # define formula
#' ff <- bmmformula(
#' kappa ~ 0 + set_size,
#' c ~ 0 + set_size,
#' a ~ 0 + set_size,
#' s ~ 0 + set_size
#' )
#'
#' # specify the full IMM model with explicit column names for non-target features and distances
#' # by default this fits the full version of the model
#' model1 <- imm(resp_error = "dev_rad",
#' nt_features = paste0('col_nt', 1:7),
#' nt_distances = paste0('dist_nt', 1:7),
#' set_size = 'set_size')
#'
#' # fit the model
#' fit <- bmm(formula = ff,
#' data = data,
#' model = model1,
#' cores = 4,
#' backend = 'cmdstanr')
#'
#' # alternatively specify the IMM model with a regular expression to match non-target features
#' # this is equivalent to the previous call, but more concise
#' model2 <- imm(resp_error = "dev_rad",
#' nt_features = 'col_nt',
#' nt_distances = 'dist_nt',
#' set_size = 'set_size',
#' regex = TRUE)
#'
#' # fit the model
#' fit <- bmm(formula = ff,
#' data = data,
#' model = model2,
#' cores = 4,
#' backend = 'cmdstanr')
#'
#' # you can also specify the `bsc` or `abc` versions of the model to fit a reduced version
#' model3 <- imm(resp_error = "dev_rad",
#' nt_features = 'col_nt',
#' set_size = 'set_size',
#' regex = TRUE,
#' version = 'abc')
#' fit <- bmm(formula = ff,
#' data = data,
#' model = model3,
#' cores = 4,
#' backend = 'cmdstanr')
#' @export
imm <- function(resp_error, nt_features, nt_distances, set_size, regex = FALSE, version = "full", ...) {
call <- match.call()
dots <- list(...)
if ("setsize" %in% names(dots)) {
set_size <- dots$setsize
warning("The argument 'setsize' is deprecated. Please use 'set_size' instead.")
}
if (version == "abc") {
nt_distances <- NULL
}
stop_missing_args()
.model_imm(resp_error = resp_error, nt_features = nt_features,
nt_distances = nt_distances, set_size = set_size, regex = regex,
version = version, call = call, ...)
}
# deprecated calls for specific versions
#' @rdname imm
#' @keywords deprecated
#' @export
IMMfull <- function(resp_error, nt_features, nt_distances, set_size, regex = FALSE, ...) {
call <- match.call()
dots <- list(...)
warning("The function `IMMfull()` is deprecated. Please use `imm(version = 'full')` instead.")
if ("setsize" %in% names(dots)) {
set_size <- dots$setsize
warning("The argument 'setsize' is deprecated. Please use 'set_size' instead.")
}
stop_missing_args()
.model_imm(resp_error = resp_error, nt_features = nt_features,
nt_distances = nt_distances, set_size = set_size, regex = regex,
version = "full", call = call, ...)
}
#' @rdname imm
#' @keywords deprecated
#' @export
IMMbsc <- function(resp_error, nt_features, nt_distances, set_size, regex = FALSE, ...) {
call <- match.call()
dots <- list(...)
warning("The function `IMMbsc()` is deprecated. Please use `imm(version = 'bsc')` instead.")
if ("setsize" %in% names(dots)) {
set_size <- dots$setsize
warning("The argument 'setsize' is deprecated. Please use 'set_size' instead.")
}
stop_missing_args()
.model_imm(resp_error = resp_error, nt_features = nt_features,
nt_distances = nt_distances, set_size = set_size, regex = regex,
version = "bsc", call = call, ...)
}
#' @rdname imm
#' @keywords deprecated
#' @export
IMMabc <- function(resp_error, nt_features, set_size, regex = FALSE, ...) {
call <- match.call()
dots <- list(...)
warning("The function `IMMabc()` is deprecated. Please use `imm(version = 'abc')` instead.")
if ("setsize" %in% names(dots)) {
set_size <- dots$setsize
warning("The argument 'setsize' is deprecated. Please use 'set_size' instead.")
}
stop_missing_args()
.model_imm(
resp_error = resp_error, nt_features = nt_features, set_size = set_size,
regex = regex, version = "abc", call = call, ...
)
}
#############################################################################!
# CHECK_DATA S3 methods ####
#############################################################################!
# A check_data.* function should be defined for each class of the model.
# If a model shares methods with other models, the shared methods should be
# defined in data-helpers.R. Put here only the methods that are specific to
# the model. See ?check_data for details
#' @export
check_data.imm_bsc <- function(model, data, formula) {
data <- .check_data_imm_dist(model, data, formula)
NextMethod("check_data")
}
#' @export
check_data.imm_full <- function(model, data, formula) {
data <- .check_data_imm_dist(model, data, formula)
NextMethod("check_data")
}
.check_data_imm_dist <- function(model, data, formula) {
nt_distances <- model$other_vars$nt_distances
max_set_size <- attr(data, 'max_set_size')
stopif(!isTRUE(all.equal(length(nt_distances), max_set_size - 1)),
"The number of columns for non-target distances in the argument \\
'nt_distances' should equal max(set_size)-1})")
# replace nt_distances
data[,nt_distances][is.na(data[,nt_distances])] <- 999
stopif(any(data[,nt_distances] < 0),
"All non-target distances to the target need to be postive.")
data
}
#############################################################################!
# CONFIGURE_MODEL METHODS ####
#############################################################################!
# Each model should have a corresponding configure_model.* function. See
# ?configure_model for more information.
#' @export
configure_model.imm_abc <- function(model, data, formula) {
# retrieve arguments from the data check
max_set_size <- attr(data, 'max_set_size')
lure_idx <- attr(data, "lure_idx_vars")
nt_features <- model$other_vars$nt_features
set_size_var <- model$other_vars$set_size
# construct main brms formula from the bmm formula
formula <- bmf2bf(model, formula) +
brms::lf(kappa2 ~ 1) +
brms::lf(mu2 ~ 1) +
brms::nlf(theta1 ~ log(exp(c) + exp(a))) +
brms::nlf(kappa1 ~ kappa)
# additional internal terms for the mixture model formula
kappa_nts <- paste0("kappa", 3:(max_set_size + 1))
theta_nts <- paste0("theta", 3:(max_set_size + 1))
mu_nts <- paste0("mu", 3:(max_set_size + 1))
for (i in 1:(max_set_size - 1)) {
formula <- formula +
glue_nlf("{kappa_nts[i]} ~ kappa") +
glue_nlf("{theta_nts[i]} ~ {lure_idx[i]} * a + (1 - {lure_idx[i]}) * (-100)") +
glue_nlf("{mu_nts[i]} ~ {nt_features[i]}")
}
# define mixture family
formula$family <- brms::mixture(brms::von_mises("tan_half"),
brms::von_mises("identity"),
nmix = c(1, max_set_size),
order = "none")
nlist(formula, data)
}
#' @export
configure_prior.imm_abc <- function(model, data, formula, user_prior, ...) {
# retrieve arguments from the data check
prior <- brms::empty_prior()
set_size_var <- model$other_vars$set_size
prior_cond <- any(data$ss_numeric == 1) && !is.numeric(data[[set_size_var]])
a_preds <- rhs_vars(formula$pforms$a)
if (prior_cond && set_size_var %in% a_preds) {
prior <- prior + brms::prior_("constant(0)",
class = "b",
coef = paste0(set_size_var, 1),
nlpar = "a")
}
# check if there is a random effect on theetant that include set_size as predictor
bterms <- brms::brmsterms(formula$pforms$a)
re_terms <- bterms$dpars$mu$re
if (!is.null(re_terms)) {
for (i in 1:nrow(re_terms)) {
group <- re_terms$group[[i]]
form <- re_terms$form[[i]]
a_preds <- rhs_vars(form)
if (prior_cond && set_size_var %in% a_preds) {
prior <- prior + brms::prior_("constant(1e-8)",
class = "sd",
coef = paste0(set_size_var, 1),
group = group,
nlpar = "a")
}
}
}
prior
}
#' @export
configure_model.imm_bsc <- function(model, data, formula) {
# retrieve arguments from the data check
max_set_size <- attr(data, 'max_set_size')
lure_idx <- attr(data, "lure_idx_vars")
nt_features <- model$other_vars$nt_features
set_size_var <- model$other_vars$set_size
nt_distances <- model$other_vars$nt_distances
# construct main brms formula from the bmm formula
formula <- bmf2bf(model, formula) +
brms::lf(kappa2 ~ 1) +
brms::lf(mu2 ~ 1) +
brms::nlf(theta1 ~ c) +
brms::nlf(kappa1 ~ kappa) +
brms::nlf(expS ~ exp(s))
# additional internal terms for the mixture model formula
kappa_nts <- paste0("kappa", 3:(max_set_size + 1))
theta_nts <- paste0("theta", 3:(max_set_size + 1))
mu_nts <- paste0("mu", 3:(max_set_size + 1))
for (i in 1:(max_set_size - 1)) {
formula <- formula +
glue_nlf("{kappa_nts[i]} ~ kappa") +
glue_nlf("{theta_nts[i]} ~ {lure_idx[i]} * (-expS*{nt_distances[i]} + c)",
" + (1 - {lure_idx[i]}) * (-100)") +
glue_nlf("{mu_nts[i]} ~ {nt_features[i]}")
}
# define mixture family
formula$family <- brms::mixture(brms::von_mises("tan_half"),
brms::von_mises("identity"),
nmix = c(1, max_set_size),
order = "none")
nlist(formula, data)
}
#' @export
configure_prior.imm_bsc <- function(model, data, formula, user_prior, ...) {
# retrieve arguments from the data check
prior <- brms::empty_prior()
set_size_var <- model$other_vars$set_size
prior_cond <- any(data$ss_numeric == 1) && !is.numeric(data[[set_size_var]])
s_preds <- rhs_vars(formula$pforms$s)
if (prior_cond && set_size_var %in% s_preds) {
prior <- prior + brms::prior_("constant(0)",
class = "b",
coef = paste0(set_size_var, 1),
nlpar = "s")
}
# check if there is a random effect on theetant that include set_size as predictor
bterms <- brms::brmsterms(formula$pforms$s)
re_terms <- bterms$dpars$mu$re
if (!is.null(re_terms)) {
for (i in 1:nrow(re_terms)) {
group <- re_terms$group[[i]]
form <- re_terms$form[[i]]
s_preds <- rhs_vars(form)
if (prior_cond && set_size_var %in% s_preds) {
prior <- prior + brms::prior_("constant(1e-8)",
class = "sd",
coef = paste0(set_size_var, 1),
group = group,
nlpar = "s")
}
}
}
prior
}
#' @export
configure_model.imm_full <- function(model, data, formula) {
# retrieve arguments from the data check
max_set_size <- attr(data, 'max_set_size')
lure_idx <- attr(data, "lure_idx_vars")
nt_features <- model$other_vars$nt_features
set_size_var <- model$other_vars$set_size
nt_distances <- model$other_vars$nt_distances
# construct main brms formula from the bmm formula
formula <- bmf2bf(model, formula) +
brms::lf(kappa2 ~ 1) +
brms::lf(mu2 ~ 1) +
brms::nlf(theta1 ~ log(exp(c) + exp(a))) +
brms::nlf(kappa1 ~ kappa) +
brms::nlf(expS ~ exp(s))
# additional internal terms for the mixture model formula
kappa_nts <- paste0("kappa", 3:(max_set_size + 1))
theta_nts <- paste0("theta", 3:(max_set_size + 1))
mu_nts <- paste0("mu", 3:(max_set_size + 1))
for (i in 1:(max_set_size - 1)) {
formula <- formula +
glue_nlf("{kappa_nts[i]} ~ kappa") +
glue_nlf("{theta_nts[i]} ~ {lure_idx[i]} * log(exp(c-expS*{nt_distances[i]}) + exp(a))",
"+ (1 - {lure_idx[i]}) * (-100)") +
glue_nlf("{mu_nts[i]} ~ {nt_features[i]}")
}
# define mixture family
formula$family <- brms::mixture(brms::von_mises("tan_half"),
brms::von_mises("identity"),
nmix = c(1, max_set_size),
order = "none")
nlist(formula, data)
}
#' @export
configure_prior.imm_full <- function(model, data, formula, user_prior, ...) {
# retrieve arguments from the data check
set_size_var <- model$other_vars$set_size
prior_cond <- any(data$ss_numeric == 1) && !is.numeric(data[[set_size_var]])
s_preds <- rhs_vars(formula$pforms$s)
a_preds <- rhs_vars(formula$pforms$a)
prior <- brms::empty_prior()
if (prior_cond && set_size_var %in% a_preds) {
prior <- prior + brms::prior_("constant(0)",
class = "b",
coef = paste0(set_size_var, 1),
nlpar = "a")
}
if (prior_cond && set_size_var %in% s_preds) {
prior <- prior + brms::prior_("constant(0)",
class = "b",
coef = paste0(set_size_var, 1),
nlpar = "s")
}
# check if there is a random effect on theetant that include set_size as predictor
bterms <- brms::brmsterms(formula$pforms$a)
re_terms <- bterms$dpars$mu$re
if (!is.null(re_terms)) {
for (i in 1:nrow(re_terms)) {
group <- re_terms$group[[i]]
form <- re_terms$form[[i]]
a_preds <- rhs_vars(form)
if (prior_cond && set_size_var %in% a_preds) {
prior <- prior + brms::prior_("constant(1e-8)",
class = "sd",
coef = paste0(set_size_var, 1),
group = group,
nlpar = "a")
}
}
}
# check if there is a random effect on theetant that include set_size as predictor
bterms <- brms::brmsterms(formula$pforms$s)
re_terms <- bterms$dpars$mu$re
if (!is.null(re_terms)) {
for (i in 1:nrow(re_terms)) {
group <- re_terms$group[[i]]
form <- re_terms$form[[i]]
s_preds <- rhs_vars(form)
if (prior_cond && set_size_var %in% s_preds) {
prior <- prior + brms::prior_("constant(1e-8)",
class = "sd",
coef = paste0(set_size_var, 1),
group = group,
nlpar = "s")
}
}
}
prior
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.