Nothing
#' proposeSplitedClusters
#'
#' @param X X
#' @param thetaYList thetaYList
#' @param hparam hparam
#' @param splitClusInd splitClusInd
#' @param splitedClusInd splitedClusInd
#' @param qVec qVec
#' @param constraint constraint
#' @examples
#' set.seed(100)
#' n <- 10
#' p <- 2
#' q <- 1
#' K <- 2
#' m <- 1
#' muBar <- c(0, 0)
#' qVec <- c(1, 1)
#' constraint <- c(0, 0, 0)
#' X <- t(
#' fabMix::simData(
#' sameLambda = TRUE,
#' sameSigma = TRUE,
#' K.true = K,
#' n = n,
#' q = q,
#' p = p,
#' sINV_values = 1 / ((1:p))
#' )$data
#' )
#' hparam <- new(
#' "Hparam",
#' alpha1 = 0.567755037123148,
#' alpha2 = 1.1870201935945,
#' delta = 2,
#' ggamma = 2,
#' bbeta = 3.39466184520673
#' )
#' ZOneDim <- sample(seq_len(m), n, replace = TRUE)
#' thetaYList <-
#' new(
#' "ThetaYList",
#' tao = 0.366618687752634,
#' psy = list(structure(
#' c(
#' 4.18375613018654,
#' 0, 0, 5.46215996830771
#' ),
#' .Dim = c(2L, 2L)
#' )),
#' M = list(structure(
#' c(
#' 3.27412045866392,
#' -2.40544145363349
#' ),
#' .Dim = 1:2
#' )),
#' lambda = list(structure(
#' c(
#' 2.51015961514781,
#' -0.0741189919182549
#' ),
#' .Dim = 2:1
#' )),
#' Y = list(structure(
#' c(
#' -0.244239011725104,
#' -0.26876172736886,
#' 0.193431511203083,
#' 0.41624466812811,
#' -0.54581548068437,
#' -0.0479517628308146,
#' -0.633383997203325,
#' 0.856855296613208,
#' 0.792850576988512,
#' 0.268208848994559
#' ),
#' .Dim = c(1L, 10L)
#' ))
#' )
#' splitClusInd <- 1
#' splitedClusInd <- c(1, 2)
#' proposeSplitedClusters(X, thetaYList, hparam, splitClusInd, splitedClusInd, qVec, constraint)
proposeSplitedClusters <- function(X, thetaYList, hparam, splitClusInd, splitedClusInd, qVec, constraint) {
p <- nrow(X)
n <- ncol(X)
ggamma <- hparam@ggamma
delta <- hparam@delta
bbeta <- hparam@bbeta
alpha1 <- hparam@alpha1
alpha2 <- hparam@alpha2
resThetaYList <- thetaYList
## beta(2,2) is symatric between (0,1)
a1 <- rbeta(1, 2, 2)
# a2 = rbeta(p, 2, 2)
a2 <- rgamma(p, 1, 2)
# print(a1)
# print("===========propose>")
# print(a2)
# print("===========propose>")
## propose weight
w1 <- thetaYList@tao[splitClusInd] * a1
w2 <- thetaYList@tao[splitClusInd] * (1 - a1)
resThetaYList@tao[splitedClusInd] <- c(w1, w2)
## propose mean
splitMu <- thetaYList@M[[splitClusInd]]
## calculate split clus Variance
splitClusVar <- thetaYList@psy[[splitClusInd]] + thetaYList@lambda[[splitClusInd]] %*% t(thetaYList@lambda[[splitClusInd]])
splitClusSDvec <- sqrt(diag(splitClusVar))
# print("=======")
# print(splitClusSDvec)
mu1 <- c()
mu2 <- c()
for (i in 1:p) {
signInd <- sample(c(-1, 1), 1)
mu1[i] <- splitMu[i] + signInd * a2[i] * splitClusSDvec[i] * sqrt(w2 / w1)
mu2[i] <- splitMu[i] + -1 * signInd * a2[i] * splitClusSDvec[i] * sqrt(w1 / w2)
}
# print(mu1)
# print(mu2)
# print(splitMu)
# print("=======>")
resThetaYList@M[[splitedClusInd[1]]] <- t(mu1)
resThetaYList@M[[splitedClusInd[2]]] <- t(mu2)
## propose lambda and psy
if (constraint[2] == 1) {
psy1 <- thetaYList@psy[[splitClusInd]]
psy2 <- thetaYList@psy[[splitClusInd]]
psy <- list(psy1, psy2)
} else {
psy <- generatePriorPsi(p, 2, delta, bbeta, constraint)
psy1 <- psy[[1]]
psy2 <- psy[[2]]
}
resThetaYList@psy[[splitedClusInd[1]]] <- psy1
resThetaYList@psy[[splitedClusInd[2]]] <- psy2
if (constraint[1] == 1) {
lambda1 <- thetaYList@lambda[[splitClusInd]]
lambda2 <- thetaYList@lambda[[splitClusInd]]
} else {
lambda <- generatePriorLambda(p, 2, alpha2, qVec[splitedClusInd], psy, constraint)
lambda1 <- lambda[[1]]
lambda2 <- lambda[[2]]
}
resThetaYList@lambda[[splitedClusInd[1]]] <- lambda1
resThetaYList@lambda[[splitedClusInd[2]]] <- lambda2
## propose Y
for (k in splitedClusInd) {
resThetaYList@Y[[k]] <- matrix(NA, qVec[k], n)
for (i in 1:n) {
resThetaYList@Y[[k]][, i] <- mvtnorm::rmvnorm(1, mean = rep(0, qVec[k]), sigma = diag(qVec[k]))
}
}
return(resThetaYList)
}
#' evaluateSplitedClusters
#'
#' @param X X
#' @param thetaYList thetaYList
#' @param splitedThetaYList splitedThetaYList
#' @param hparam hparam
#' @param splitClusInd splitClusInd
#' @param splitedClusInd splitedClusInd
#' @param qVec qVec
#' @param constraint constraint
#' @examples
#' set.seed(100)
#' n <- 10
#' p <- 2
#' q <- 1
#' K <- 2
#' m <- 1
#' muBar <- c(0, 0)
#' qVec <- c(1, 1)
#' constraint <- c(0, 0, 0)
#' X <- t(
#' fabMix::simData(
#' sameLambda = TRUE,
#' sameSigma = TRUE,
#' K.true = K,
#' n = n,
#' q = q,
#' p = p,
#' sINV_values = 1 / ((1:p))
#' )$data
#' )
#' hparam <- new(
#' "Hparam",
#' alpha1 = 0.567755037123148,
#' alpha2 = 1.1870201935945,
#' delta = 2,
#' ggamma = 2,
#' bbeta = 3.39466184520673
#' )
#' ZOneDim <- sample(seq_len(m), n, replace = TRUE)
#' splitedThetaYList <- thetaYList <-
#' new(
#' "ThetaYList",
#' tao = 0.366618687752634,
#' psy = list(structure(
#' c(
#' 4.18375613018654,
#' 0, 0, 5.46215996830771
#' ),
#' .Dim = c(2L, 2L)
#' )),
#' M = list(structure(
#' c(
#' 3.27412045866392,
#' -2.40544145363349
#' ),
#' .Dim = 1:2
#' )),
#' lambda = list(structure(
#' c(
#' 2.51015961514781,
#' -0.0741189919182549
#' ),
#' .Dim = 2:1
#' )),
#' Y = list(structure(
#' c(
#' -0.244239011725104,
#' -0.26876172736886,
#' 0.193431511203083,
#' 0.41624466812811,
#' -0.54581548068437,
#' -0.0479517628308146,
#' -0.633383997203325,
#' 0.856855296613208,
#' 0.792850576988512,
#' 0.268208848994559
#' ),
#' .Dim = c(1L, 10L)
#' ))
#' )
#' qnew <- 1
#' dVec <- c(1, 1, 1)
#' sVec <- c(1, 1, 1)
#' splitClusInd <- 1
#' splitedClusInd <- c(1, 1)
#' evaluateSplitedClusters(X, thetaYList, splitedThetaYList, hparam, splitClusInd, splitedClusInd, qVec, constraint)
evaluateSplitedClusters <- function(X, thetaYList, splitedThetaYList, hparam, splitClusInd, splitedClusInd, qVec, constraint) {
p <- nrow(X)
n <- ncol(X)
ggamma <- hparam@ggamma
delta <- hparam@delta
bbeta <- hparam@bbeta
alpha1 <- hparam@alpha1
alpha2 <- hparam@alpha2
## evaluate a1
w1 <- splitedThetaYList@tao[splitedClusInd[1]]
w2 <- splitedThetaYList@tao[splitedClusInd[2]]
w <- thetaYList@tao[splitClusInd]
EVALa1 <- dbeta(w1 / w, 2, 2, log = T)
## evaluate a2
splitMu <- thetaYList@M[[splitClusInd]]
## calculate split clus Variance
splitClusVar <- thetaYList@psy[[splitClusInd]] + thetaYList@lambda[[splitClusInd]] %*% t(thetaYList@lambda[[splitClusInd]])
splitClusSDvec <- sqrt(diag(splitClusVar))
# print("=======")
# print(splitClusSDvec)
mu1 <- splitedThetaYList@M[[splitedClusInd[1]]]
mu2 <- splitedThetaYList@M[[splitedClusInd[2]]]
# print(mu1)
# print(mu2)
# print(splitMu)
# print("=======>")
a2 <- c()
EVALa2 <- c()
for (i in 1:p) {
a2[i] <- abs((mu1[i] - splitMu[i]) / (splitClusSDvec[i] * sqrt(w2 / w1)))
# a2[i] = abs( (mu2[i] - splitMu[i]) /(splitClusSDvec[i] * sqrt(w1/w2)) )
# EVALa2[i] = dbeta(a2[i],2,2, log = T)
# EVALa2[i] = dbeta(a2[i],1,1, log = T)
EVALa2[i] <- dgamma(a2[i], 1, 2, log = T)
}
# print(a2)
# print(EVALa2)
# x = rbeta(10000, 2,2)
# y = x/(1-x)* rgamma(10000,1,2)
#
# hist(sqrt(y))
#
# hist(rgamma(10000, 2,4))
# hist(rbeta(10000, 2,2))
# print(w1/w)
# print("===========evaluate>")
# print(a2)
# print("===========evaluate>")
## eval psy
psy1 <- splitedThetaYList@psy[[splitedClusInd[1]]]
psy2 <- splitedThetaYList@psy[[splitedClusInd[2]]]
psy <- list(psy1, psy2)
evalpsy <- 0
if (constraint[2] == 0) {
evalpsy <- evaluatePriorPsi(psy, p, 2, delta, bbeta, constraint, c(1, 1))
}
## eval lambda
lambda1 <- splitedThetaYList@lambda[[splitedClusInd[1]]]
lambda2 <- splitedThetaYList@lambda[[splitedClusInd[2]]]
lambda <- list(lambda1, lambda2)
evallambda <- 0
if (constraint[1] == 0) {
evallambda <- evaluatePriorLambda(p, 2, alpha2, qVec[splitedClusInd], psy, lambda, constraint, c(1, 1))
}
# signEval = log(0.5 ^ p)
# print(c(EVALa1, EVALa2, evalpsy, evallambda))
return(sum(EVALa1, EVALa2, evalpsy, evallambda))
}
#' splitZOneDim
#'
#' @param ZOneDim ZOneDim
#' @param splitedThetaYList splitedThetaYList
#' @param splitClusInd splitClusInd
#' @param splitedClusInd splitedClusInd
#' @examples
#' set.seed(100)
#' n <- 10
#' p <- 2
#' q <- 1
#' K <- 2
#' m <- 2
#' muBar <- c(0, 0)
#' qVec <- c(1, 1)
#' constraint <- c(0, 0, 0)
#' X <- t(
#' fabMix::simData(
#' sameLambda = TRUE,
#' sameSigma = TRUE,
#' K.true = K,
#' n = n,
#' q = q,
#' p = p,
#' sINV_values = 1 / ((1:p))
#' )$data
#' )
#' hparam <- new(
#' "Hparam",
#' alpha1 = 0.567755037123148,
#' alpha2 = 1.1870201935945,
#' delta = 2,
#' ggamma = 2,
#' bbeta = 3.39466184520673
#' )
#' ZOneDim <- sample(seq_len(m), n, replace = TRUE)
#' splitedThetaYList <-
#' new("ThetaYList",
#' tao = c(0.90162050961987, 0.0983794903801295),
#' psy = list(
#' structure(c(3.68472841602225, 0, 0, 8.34691978354054), .Dim = c(2L, 2L)),
#' structure(c(0.785011896130842, 0, 0, 1.19022383323437), .Dim = c(2L, 2L))
#' ),
#' M = list(structure(c(
#' 2.96424305287004,
#' 1.08454861414306
#' ), .Dim = 1:2), structure(c(
#' -0.232625450433964,
#' 0.984505960868685
#' ), .Dim = 1:2)), lambda = list(structure(c(
#' -0.964026624054337,
#' 0.89378616732449
#' ), .Dim = 2:1), structure(c(
#' 0.533334148228635,
#' -1.80033696090263
#' ), .Dim = 2:1)), Y = list(structure(c(
#' -0.15346475266988,
#' 1.6584112693271, 0.409294936277862, -1.46628591247549, -0.532753243163142,
#' -0.332143130316749, 0.307558110800446, -0.525374243612587, 0.527667526535661,
#' 0.748193650431916
#' ), .Dim = c(1L, 10L)), structure(c(
#' 0.571325118638535,
#' 0.542462985882966, 0.559971315637159, -1.73905343105432, -0.583549598471542,
#' 1.71264245945391, -0.327119395945831, 1.02464651767821, -1.11462280255215,
#' 0.81095592501554
#' ), .Dim = c(1L, 10L)))
#' )
#' splitClusInd <- 1
#' splitedClusInd <- c(1, 2)
#' splitZOneDim(ZOneDim, splitedThetaYList, splitClusInd, splitedClusInd)
splitZOneDim <- function(ZOneDim, splitedThetaYList, splitClusInd, splitedClusInd) {
resZOneDim <- ZOneDim
evalProb <- c()
splitObsInd <- which(ZOneDim == splitClusInd)
for (j in 1:length(splitObsInd)) {
# print(j)
i <- splitObsInd[j]
p1 <- log(splitedThetaYList@tao[splitedClusInd[1]]) + mvtnorm::dmvnorm(X[, i],
mean = splitedThetaYList@M[[splitedClusInd[1]]],
sigma = splitedThetaYList@psy[[splitedClusInd[1]]] + splitedThetaYList@lambda[[splitedClusInd[1]]] %*% t(splitedThetaYList@lambda[[splitedClusInd[1]]]),
log = T
)
# p1 = mvtnorm::dmvnorm(X[,i], mean = splitedThetaYList@M[[splitedClusInd[1]]],
# sigma = splitedThetaYList@psy[[splitedClusInd[1]]] + splitedThetaYList@lambda[[splitedClusInd[1]]]%*%t(splitedThetaYList@lambda[[splitedClusInd[1]]]),
# log = T)
p2 <- log(splitedThetaYList@tao[splitedClusInd[2]]) + mvtnorm::dmvnorm(X[, i],
mean = splitedThetaYList@M[[splitedClusInd[2]]],
sigma = splitedThetaYList@psy[[splitedClusInd[2]]] + splitedThetaYList@lambda[[splitedClusInd[2]]] %*% t(splitedThetaYList@lambda[[splitedClusInd[2]]]),
log = T
)
# p2 = mvtnorm::dmvnorm(X[,i], mean = splitedThetaYList@M[[splitedClusInd[2]]],
# sigma = splitedThetaYList@psy[[splitedClusInd[2]]] + splitedThetaYList@lambda[[splitedClusInd[2]]]%*%t(splitedThetaYList@lambda[[splitedClusInd[2]]]),
# log = T)
# cat(" for sub", i,"===\n")
# cat("p1 = ", p1, "===\n")
# cat("p2 = ", p2, "===\n")
# print("=======>")
if (is.infinite(p1)) {
print("===infi")
p1 <- -1e-10
}
if (is.infinite(p2)) {
print("===infi")
p2 <- -1e-10
}
# print(c(p1,p2))
prob <- calculateRatio(p1, c(p1, p2))
# cat("prob = ", prob, "====>\n")
probVec <- c(prob, 1 - prob)
Zind <- sample(x = 1:2, size = 1, prob = probVec)
evalProb[j] <- probVec[Zind]
resZOneDim[i] <- splitedClusInd[Zind]
}
return(list(ZOneDim = resZOneDim, evalProb = sum(log(evalProb))))
}
#' splitEvalZOneDim
#'
#' @param ZOneDimSplit ZOneDimSplit
#' @param ZOneDimSplited ZOneDimSplited
#' @param splitedThetaYList splitedThetaYList
#' @param splitClusInd splitClusInd
#' @param splitedClusInd splitedClusInd
#' @examples
#' set.seed(100)
#' n <- 10
#' p <- 2
#' q <- 1
#' K <- 2
#' m <- 2
#' muBar <- c(0, 0)
#' qVec <- c(1, 1)
#' constraint <- c(0, 0, 0)
#' X <- t(
#' fabMix::simData(
#' sameLambda = TRUE,
#' sameSigma = TRUE,
#' K.true = K,
#' n = n,
#' q = q,
#' p = p,
#' sINV_values = 1 / ((1:p))
#' )$data
#' )
#' hparam <- new(
#' "Hparam",
#' alpha1 = 0.567755037123148,
#' alpha2 = 1.1870201935945,
#' delta = 2,
#' ggamma = 2,
#' bbeta = 3.39466184520673
#' )
#' ZOneDimSplit <- sample(seq_len(m), n, replace = TRUE)
#' ZOneDimSplit[ZOneDimSplit == 2] <- 1
#' constraint <- c(0, 0, 0)
#' splitedThetaYList <- new("ThetaYList", tao = c(0.90162050961987, 0.0983794903801295), psy = list(structure(c(3.68472841602225, 0, 0, 8.34691978354054), .Dim = c(2L, 2L)), structure(c(0.785011896130842, 0, 0, 1.19022383323437), .Dim = c(2L, 2L))), M = list(structure(c(
#' 2.96424305287004,
#' 1.08454861414306
#' ), .Dim = 1:2), structure(c(
#' -0.232625450433964,
#' 0.984505960868685
#' ), .Dim = 1:2)), lambda = list(structure(c(
#' -0.964026624054337,
#' 0.89378616732449
#' ), .Dim = 2:1), structure(c(
#' 0.533334148228635,
#' -1.80033696090263
#' ), .Dim = 2:1)), Y = list(structure(c(
#' -0.15346475266988,
#' 1.6584112693271, 0.409294936277862, -1.46628591247549, -0.532753243163142,
#' -0.332143130316749, 0.307558110800446, -0.525374243612587, 0.527667526535661,
#' 0.748193650431916
#' ), .Dim = c(1L, 10L)), structure(c(
#' 0.571325118638535,
#' 0.542462985882966, 0.559971315637159, -1.73905343105432, -0.583549598471542,
#' 1.71264245945391, -0.327119395945831, 1.02464651767821, -1.11462280255215,
#' 0.81095592501554
#' ), .Dim = c(1L, 10L))))
#' splitClusInd <- 1
#' splitedClusInd <- c(1, 2)
#' ZOneDimSplited <- sample(seq_len(m), n, replace = TRUE)
#' splitEvalZOneDim(ZOneDimSplit, ZOneDimSplited, splitedThetaYList, splitClusInd, splitedClusInd)
splitEvalZOneDim <- function(ZOneDimSplit, ZOneDimSplited, splitedThetaYList, splitClusInd, splitedClusInd) {
evalProb <- c()
splitObsInd <- which(ZOneDimSplit == splitClusInd)
for (j in 1:length(splitObsInd)) {
i <- splitObsInd[j]
p1 <- log(splitedThetaYList@tao[splitedClusInd[1]]) + mvtnorm::dmvnorm(X[, i],
mean = splitedThetaYList@M[[splitedClusInd[1]]],
sigma = splitedThetaYList@psy[[splitedClusInd[1]]] + splitedThetaYList@lambda[[splitedClusInd[1]]] %*% t(splitedThetaYList@lambda[[splitedClusInd[1]]]),
log = T
)
p2 <- log(splitedThetaYList@tao[splitedClusInd[2]]) + mvtnorm::dmvnorm(X[, i],
mean = splitedThetaYList@M[[splitedClusInd[2]]],
sigma = splitedThetaYList@psy[[splitedClusInd[2]]] + splitedThetaYList@lambda[[splitedClusInd[2]]] %*% t(splitedThetaYList@lambda[[splitedClusInd[2]]]),
log = T
)
prob <- calculateRatio(p1, c(p1, p2))
# cat("prob = ", prob, "====>\n")
probVec <- c(prob, 1 - prob)
# print(prob)
Zind <- which(splitedClusInd == ZOneDimSplited[i])
# Zind = sample(x = 1:2,size = 1, prob = probVec)
evalProb[j] <- probVec[Zind]
}
return(sum(log(evalProb)))
}
#' calculateJacobian
#'
#' @param p p
#' @param thetaYList thetaYList
#' @param splitedThetaYList splitedThetaYList
#' @param splitClusInd splitClusInd
#' @param splitedClusInd splitedClusInd
#'
#' @return
#' @export
#'
#' @examples
#' set.seed(100)
#' n <- 10
#' p <- 2
#' q <- 1
#' K <- 2
#' m <- 2
#' muBar <- c(0, 0)
#' qVec <- c(1, 1)
#' constraint <- c(0, 0, 0)
#' X <- t(
#' fabMix::simData(
#' sameLambda = TRUE,
#' sameSigma = TRUE,
#' K.true = K,
#' n = n,
#' q = q,
#' p = p,
#' sINV_values = 1 / ((1:p))
#' )$data
#' )
#' hparam <- new(
#' "Hparam",
#' alpha1 = 0.567755037123148,
#' alpha2 = 1.1870201935945,
#' delta = 2,
#' ggamma = 2,
#' bbeta = 3.39466184520673
#' )
#' ZOneDim <- sample(seq_len(m), n, replace = TRUE)
#' thetaYList <-
#' new(
#' "ThetaYList",
#' tao = 0.366618687752634,
#' psy = list(structure(
#' c(
#' 4.18375613018654,
#' 0, 0, 5.46215996830771
#' ),
#' .Dim = c(2L, 2L)
#' )),
#' M = list(structure(
#' c(
#' 3.27412045866392,
#' -2.40544145363349
#' ),
#' .Dim = 1:2
#' )),
#' lambda = list(structure(
#' c(
#' 2.51015961514781,
#' -0.0741189919182549
#' ),
#' .Dim = 2:1
#' )),
#' Y = list(structure(
#' c(
#' -0.244239011725104,
#' -0.26876172736886,
#' 0.193431511203083,
#' 0.41624466812811,
#' -0.54581548068437,
#' -0.0479517628308146,
#' -0.633383997203325,
#' 0.856855296613208,
#' 0.792850576988512,
#' 0.268208848994559
#' ),
#' .Dim = c(1L, 10L)
#' ))
#' )
#' splitedThetaYList <- new("ThetaYList", tao = c(0.90162050961987, 0.0983794903801295), psy = list(structure(c(3.68472841602225, 0, 0, 8.34691978354054), .Dim = c(2L, 2L)), structure(c(0.785011896130842, 0, 0, 1.19022383323437), .Dim = c(2L, 2L))), M = list(structure(c(
#' 2.96424305287004,
#' 1.08454861414306
#' ), .Dim = 1:2), structure(c(
#' -0.232625450433964,
#' 0.984505960868685
#' ), .Dim = 1:2)), lambda = list(structure(c(
#' -0.964026624054337,
#' 0.89378616732449
#' ), .Dim = 2:1), structure(c(
#' 0.533334148228635,
#' -1.80033696090263
#' ), .Dim = 2:1)), Y = list(structure(c(
#' -0.15346475266988,
#' 1.6584112693271, 0.409294936277862, -1.46628591247549, -0.532753243163142,
#' -0.332143130316749, 0.307558110800446, -0.525374243612587, 0.527667526535661,
#' 0.748193650431916
#' ), .Dim = c(1L, 10L)), structure(c(
#' 0.571325118638535,
#' 0.542462985882966, 0.559971315637159, -1.73905343105432, -0.583549598471542,
#' 1.71264245945391, -0.327119395945831, 1.02464651767821, -1.11462280255215,
#' 0.81095592501554
#' ), .Dim = c(1L, 10L))))
#' splitClusInd <- 1
#' splitedClusInd <- c(1, 2)
#' calculateJacobian(p, thetaYList, splitedThetaYList, splitClusInd, splitedClusInd)
calculateJacobian <- function(p, thetaYList, splitedThetaYList, splitClusInd, splitedClusInd) {
w1 <- splitedThetaYList@tao[splitedClusInd[1]]
w2 <- splitedThetaYList@tao[splitedClusInd[2]]
w <- thetaYList@tao[splitClusInd]
splitClusVar <- thetaYList@psy[[splitClusInd]] + thetaYList@lambda[[splitClusInd]] %*% t(thetaYList@lambda[[splitClusInd]])
splitClusSDvec <- sqrt(diag(splitClusVar))
mu1 <- splitedThetaYList@M[[splitedClusInd[1]]]
mu2 <- splitedThetaYList@M[[splitedClusInd[2]]]
splitMu <- thetaYList@M[[splitClusInd]]
a2 <- c()
for (i in 1:p) {
a2[i] <- abs((mu1[i] - splitMu[i]) / (splitClusSDvec[i] * sqrt(w2 / w1)))
}
res <- log(w) + sum(log(abs((mu1 - mu2) / a2)))
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.