covEffectOR1 | R Documentation |
This function computes the average covariate effect for different outcomes of the OR1 model at a specified quantile. The covariate effects are calculated marginally of the parameters and the remaining covariates.
covEffectOR1(modelOR1, y, xMat1, xMat2, p, verbose)
modelOR1 |
output from the quantregOR1 function. |
y |
observed ordinal outcomes, column vector of size |
xMat1 |
covariate matrix of size |
xMat2 |
covariate matrix x with suitable modification to an independent variable including a column of ones with or without column names. If the covariate of interest is continuous, then add the incremental change to each observation in the column for the covariate of interest. If the covariate is an indicator variable, then replace the column for the covariate of interest with a column of ones. |
p |
quantile level or skewness parameter, p in (0,1). |
verbose |
whether to print the final output and provide additional information or not, default is TRUE. |
This function computes the average covariate effect for different outcomes of the OR1 model at a specified quantile. The covariate effects are computed, using the MCMC draws, marginally of the parameters and the remaining covariates.
Returns a list with components:
avgDiffProb : |
vector with change in predicted probability for each outcome category. |
Rahman, M. A. (2016). '"Bayesian Quantile Regression for Ordinal Models."' Bayesian Analysis, 11(1): 1-24. DOI: 10.1214/15-BA939
Jeliazkov, I., Graves, J., and Kutzbach, M. (2008). '"Fitting and Comparison of Models for Multivariate Ordinal Outcomes."' Advances in Econometrics: Bayesian Econometrics, 23: 115'-'156. DOI: 10.1016/S0731-9053(08)23004-5
Jeliazkov, I. and Rahman, M. A. (2012). '"Binary and Ordinal Data Analysis in Economics: Modeling and Estimation"' in Mathematical Modeling with Multidisciplinary Applications, edited by X.S. Yang, 123-150. John Wiley '&' Sons Inc, Hoboken, New Jersey. DOI: 10.1002/9781118462706.ch6
set.seed(101)
data("data25j4")
y <- data25j4$y
xMat1 <- data25j4$x
k <- dim(xMat1)[2]
J <- dim(as.array(unique(y)))[1]
b0 <- array(rep(0, k), dim = c(k, 1))
B0 <- 10*diag(k)
d0 <- array(0, dim = c(J-2, 1))
D0 <- 0.25*diag(J - 2)
modelOR1 <- quantregOR1(y = y, x = xMat1, b0, B0, d0, D0,
burn = 10, mcmc = 40, p = 0.25, tune = 1, accutoff = 0.5, maxlags = 400, verbose = FALSE)
xMat2 <- xMat1
xMat2[,3] <- xMat2[,3] + 0.02
res <- covEffectOR1(modelOR1, y, xMat1, xMat2, p = 0.25, verbose = TRUE)
# Summary of Covariate Effect:
# Covariate Effect
# Category_1 -0.0072
# Category_2 -0.0012
# Category_3 -0.0009
# Category_4 0.0093
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.