Nothing
#' Braid kappa Bayesian Prior
#'
#' Generates a Bayesian prior object on the BRAID parameter kappa to stabilize
#' parameter fitting
#'
#' @param spread Rough estimate of the standard deviation of measurement noise
#' or errors expected in a given data set. Commonly used values are standard
#' deviation of negative/positive controls or root mean squared error of a
#' preliminary surface fit.
#' @param strength String indicating the influence of the BRAID prior on the
#' resulting fit. Must be one of "mild", "moderate" (the default), "high", or
#' "none".
#'
#' @return An object of class `kappaPrior` containing two numeric elements,
#' `spread`, and `strength`. Used in BRAID fitting functions to stabilize
#' the parameter kappa
#' @export
#'
#' @examples
#' prior <- kappaPrior(0.05,"mild")
#'
#' bfit <- braidrm(measure ~ concA + concB, incompleteExample,
#' prior=prior, getCIs=FALSE)
#' summary(bfit)
kappaPrior <- function(spread,strength="moderate") {
if (is.character(strength)) {
strength <- switch(strength,
none = 0,
mild = 2/3,
moderate = 1,
high = 3/2,
stop(sprintf("Unrecognized prior strength '%s'.",strength))
)
}
structure(
list(spread=spread,strength=strength),
class = "kappaPrior"
)
}
defaultSurfaceSpread <- function(concs,act,weights=NULL,start=NULL) {
if (length(act)<=9) { return(stats::sd(act)) }
model <- 1:9
if (is.null(weights)) {
weights <- rep(1,length(act))
}
if (isBraidParameter(start)) {
start <- fillOutBraidPar(start)
} else {
start <- defaultStartingVector(concs,act,model,"",start,0)
}
pbounds <- fillParameterBounds(NULL,NULL,model,concs,start)
bfit <- fitBraidScenario_IV_1(concs,act,model,weights,start,0,pbounds,0)
spread <- sqrt(sum(bfit$residuals^2)/(length(act)-9))
spread
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.