Nothing
test_that("brm_prior_simple() unstructured", {
set.seed(0L)
data <- brm_simulate_outline()
data <- brm_simulate_continuous(data, names = c("age", "biomarker"))
formula <- brm_formula(
data = data,
baseline = FALSE,
baseline_time = FALSE,
check_rank = FALSE
)
expect_warning(
brm_prior_simple(
data = data,
formula = formula,
intercept = "normal(0, 1)",
coefficients = "normal(0, 2)",
sigma = "normal(0, 3)",
correlation = "lkj(2.5)"
),
class = "brm_deprecate"
)
out <- brm_prior_simple(
data = data,
formula = formula,
intercept = "normal(0, 1)",
coefficients = "normal(0, 2)",
sigma = "normal(0, 3)",
unstructured = "lkj(2.5)"
)
expect_equal(out$prior[out$class == "Intercept"], "normal(0, 1)")
expect_equal(out$prior[out$class == "b" & out$dpar == ""], "normal(0, 2)")
expect_equal(
out$prior[out$class == "b" & out$dpar == "sigma"],
"normal(0, 3)"
)
expect_equal(out$prior[out$class == "cortime"], "lkj(2.5)")
for (class in c("ar", "ma", "cosy")) {
expect_equal(out$prior[out$class == class], character(0L))
}
})
test_that("brm_prior_simple() arma", {
set.seed(0L)
data <- brm_simulate_outline()
data <- brm_simulate_continuous(data, names = c("age", "biomarker"))
formula <- brm_formula(
data = data,
baseline = FALSE,
baseline_time = FALSE,
correlation = "autoregressive_moving_average",
check_rank = FALSE
)
out <- brm_prior_simple(
data = data,
formula = formula,
intercept = "normal(0, 1)",
coefficients = "normal(0, 2)",
sigma = "normal(0, 3)",
autoregressive = "normal(1, 2)",
moving_average = "normal(3, 4)"
)
expect_equal(out$prior[out$class == "Intercept"], "normal(0, 1)")
expect_equal(out$prior[out$class == "b" & out$dpar == ""], "normal(0, 2)")
expect_equal(
out$prior[out$class == "b" & out$dpar == "sigma"],
"normal(0, 3)"
)
expect_equal(out$prior[out$class == "ar"], "normal(1, 2)")
expect_equal(out$prior[out$class == "ma"], "normal(3, 4)")
for (class in c("cortime", "cosy")) {
expect_equal(out$prior[out$class == class], character(0L))
}
})
test_that("brm_prior_simple() cosy", {
set.seed(0L)
data <- brm_simulate_outline()
data <- brm_simulate_continuous(data, names = c("age", "biomarker"))
formula <- brm_formula(
data = data,
baseline = FALSE,
baseline_time = FALSE,
correlation = "compound_symmetry",
check_rank = FALSE
)
out <- brm_prior_simple(
data = data,
formula = formula,
intercept = "normal(0, 1)",
coefficients = "normal(0, 2)",
sigma = "normal(0, 3)",
compound_symmetry = "normal(1.5, 2)"
)
expect_equal(out$prior[out$class == "Intercept"], "normal(0, 1)")
expect_equal(out$prior[out$class == "b" & out$dpar == ""], "normal(0, 2)")
expect_equal(
out$prior[out$class == "b" & out$dpar == "sigma"],
"normal(0, 3)"
)
expect_equal(out$prior[out$class == "cosy"], "normal(1.5, 2)")
for (class in c("ar", "ma", "cortime")) {
expect_equal(out$prior[out$class == class], character(0L))
}
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.