Nothing
# set-up ====
enumerate <- 0L
errorfun <- function(tt) {
if(isFALSE(tt)) stop(print(tt))
}
test_make_dims <- function(n) {
# make dimensions that are randomly of size 1 or 5:
out <- lapply(1:n, \(n)sample(c(1, 5), 1)) |> unlist()
# check if the dimensions produce a too large object.
# If so, replace one >1L dimension with 1L
if(prod(out) > 5000L) {
ind <- which(out > 1L)[1L]
out[ind] <- 1L
}
return(out)
}
.return_missing <- broadcast:::.return_missing
# plus ====
nres <- 5 * 5 * 5 * 3 * 3 # number of tests performed here
expected <- out <- vector("list", nres)
op <- "+"
i <- 1L
for(iSample in 1:5) { # re-do tests with different random configurations
x.data <- list(
sample(c(TRUE, FALSE, NA), 100, TRUE), # logical
sample(c(-10:10, NA), 100, TRUE), # integer
sample(c(rnorm(10), NA, NaN, Inf, -Inf), 100, TRUE) # double
)
y.data <- list(
sample(c(TRUE, FALSE, NA), 100, TRUE), # logical
sample(c(-10:10, NA), 100, TRUE), # integer
sample(c(rnorm(10), NA, NaN, Inf, -Inf), 100, TRUE) # double
)
for(iDimX in sample(1:8, 3L)) { # different dimensions for x
x.dim <- test_make_dims(iDimX)
x.len <- prod(x.dim)
for(iDimY in sample(1:8, 3L)) { # different dimensions for y
y.dim <- test_make_dims(iDimY)
y.len <- prod(y.dim)
for(iDataX in 1:length(x.data)) { # different data types for x
x <- array(x.data[[iDataX]][1:x.len], dim = x.dim)
for(iDataY in 1:length(y.data)) { # different data types for y
y <- array(y.data[[iDataY]][1:y.len], dim = y.dim)
# PREPARE FOR TEST
tdim <- bc_dim(x, y)
# print(x)
# print(y)
# print(tdim)
# # cat("\n")
#
# cat("dim(x) = ", dim(x), "\n")
# cat("dim(y) = ", dim(y), "\n")
# DO TESTS BY CASE:
if(is.null(tdim)) {
# CASE 1: result has no dimensions (for ex. when x and y are both scalars)
expected[[i]] <- as_dbl(drop(x)) + as_dbl(drop(y))
dim
# attributes(expected[[i]]) <- NULL # must be a vector if tdim == NULL
out[[i]] <- bc.d(x, y, op)
}
else if(length(y) == 1L && length(x) == 1L) {
# CASE 2: x and y are both scalar arrays
expected[[i]] <- as.double(x) + as.double(y)
out[[i]] <- bc.d(x, y, op)
}
else if(length(x) == 1L && length(y) > 1L) {
# CASE 3: x is scalar, y is not
expected[[i]] <- as.double(x) + rep_dim(as_dbl(y), tdim)
out[[i]] <- bc.d(x, y, op)
}
else if(length(y) == 1L && length(x) > 1L) {
# CASE 4: y is scalar, x is not
expected[[i]] <- rep_dim(as_dbl(x), tdim) + as.double(y)
out[[i]] <- bc.d(x, y, op)
}
else {
# CASE 5: x and y are both non-reducible arrays
expected[[i]] <- rep_dim(as_dbl(x), tdim) + rep_dim(as_dbl(y), tdim)
out[[i]] <- bc.d(x, y, op)
}
# END CASES
# R is sometimes inconsistent whether it returns NA or NaN
# for example: NaN + NaN = NA, but NaN - NaN = NaN
# the 'broadcast' package prefers to remain consistent in all NA/NaN cases
# the following code is meant to ensure NaN results turn to NA, like 'broadcast' does
ind.NaN <- is.nan(expected[[i]])
expected[[i]][ind.NaN] <- .return_missing(expected[[i]][ind.NaN])
ind.NaN <- is.nan(out[[i]])
out[[i]][ind.NaN] <- .return_missing(out[[i]][ind.NaN])
# ensure correct dimensions:
dim(expected[[i]]) <- tdim
i <- i + 1L
}
}
}
}
}
enumerate <- enumerate + i # count number of tests
# test results:
expect_equal(
expected, out
)
# minus ====
nres <- 5 * 5 * 5 * 3 * 3 # number of tests performed here
expected <- out <- vector("list", nres)
op <- "-"
i <- 1L
for(iSample in 1:5) { # re-do tests with different random configurations
x.data <- list(
sample(c(TRUE, FALSE, NA), 100, TRUE), # logical
sample(c(-10:10, NA), 100, TRUE), # integer
sample(c(rnorm(10), NA, NaN, Inf, -Inf), 100, TRUE) # double
)
y.data <- list(
sample(c(TRUE, FALSE, NA), 100, TRUE), # logical
sample(c(-10:10, NA), 100, TRUE), # integer
sample(c(rnorm(10), NA, NaN, Inf, -Inf), 100, TRUE) # double
)
for(iDimX in sample(1:8, 3L)) { # different dimensions for x
x.dim <- test_make_dims(iDimX)
x.len <- prod(x.dim)
for(iDimY in sample(1:8, 3L)) { # different dimensions for y
y.dim <- test_make_dims(iDimY)
y.len <- prod(y.dim)
for(iDataX in 1:length(x.data)) { # different data types for x
x <- array(x.data[[iDataX]][1:x.len], dim = x.dim)
for(iDataY in 1:length(y.data)) { # different data types for y
y <- array(y.data[[iDataY]][1:y.len], dim = y.dim)
# PREPARE FOR TEST
tdim <- bc_dim(x, y)
# print(x)
# print(y)
# print(tdim)
# cat("\n")
# DO TESTS BY CASE:
if(is.null(tdim)) {
# CASE 1: result has no dimensions (for ex. when x and y are both scalars)
expected[[i]] <- as_dbl(drop(x)) - as_dbl(drop(y))
attributes(expected[[i]]) <- NULL # must be a vector if tdim == NULL
out[[i]] <- bc.d(x, y, op)
}
else if(length(y) == 1L && length(x) == 1L) {
# CASE 2: x and y are both scalar arrays
expected[[i]] <- as.double(x) - as.double(y)
out[[i]] <- bc.d(x, y, op)
}
else if(length(x) == 1L && length(y) > 1L) {
# CASE 3: x is scalar, y is not
expected[[i]] <- as.double(x) - rep_dim(as_dbl(y), tdim)
out[[i]] <- bc.d(x, y, op)
}
else if(length(y) == 1L && length(x) > 1L) {
# CASE 4: y is scalar, x is not
expected[[i]] <- rep_dim(as_dbl(x), tdim) - as.double(y)
out[[i]] <- bc.d(x, y, op)
}
else {
# CASE 5: x and y are both non-reducible arrays
expected[[i]] <- rep_dim(as_dbl(x), tdim) - rep_dim(as_dbl(y), tdim)
out[[i]] <- bc.d(x, y, op)
}
# END CASES
# R is sometimes inconsistent whether it returns NA or NaN
# for example: NaN + NaN = NA, but NaN - NaN = NaN
# the 'broadcast' package prefers to remain consistent in all NA/NaN cases
# the following code is meant to ensure NaN results turn to NA, like 'broadcast' does
ind.NaN <- is.nan(expected[[i]])
expected[[i]][ind.NaN] <- .return_missing(expected[[i]][ind.NaN])
ind.NaN <- is.nan(out[[i]])
out[[i]][ind.NaN] <- .return_missing(out[[i]][ind.NaN])
# ensure correct dimensions:
dim(expected[[i]]) <- tdim
i <- i + 1L
}
}
}
}
}
enumerate <- enumerate + i # count number of tests
# test results:
expect_equal(
expected, out
)
# multiply ====
nres <- 5 * 5 * 5 * 3 * 3 # number of tests performed here
expected <- out <- vector("list", nres)
op <- "*"
i <- 1L
for(iSample in 1:5) { # re-do tests with different random configurations
x.data <- list(
sample(c(TRUE, FALSE, NA), 100, TRUE), # logical
sample(c(-10:10, NA), 100, TRUE), # integer
sample(c(rnorm(10), NA, NaN, Inf, -Inf), 100, TRUE) # double
)
y.data <- list(
sample(c(TRUE, FALSE, NA), 100, TRUE), # logical
sample(c(-10:10, NA), 100, TRUE), # integer
sample(c(rnorm(10), NA, NaN, Inf, -Inf), 100, TRUE) # double
)
for(iDimX in sample(1:8, 3L)) { # different dimensions for x
x.dim <- test_make_dims(iDimX)
x.len <- prod(x.dim)
for(iDimY in sample(1:8, 3L)) { # different dimensions for y
y.dim <- test_make_dims(iDimY)
y.len <- prod(y.dim)
for(iDataX in 1:length(x.data)) { # different data types for x
x <- array(x.data[[iDataX]][1:x.len], dim = x.dim)
for(iDataY in 1:length(y.data)) { # different data types for y
y <- array(y.data[[iDataY]][1:y.len], dim = y.dim)
# PREPARE FOR TEST
tdim <- bc_dim(x, y)
# print(x)
# print(y)
# print(tdim)
# cat("\n")
# DO TESTS BY CASE:
if(is.null(tdim)) {
# CASE 1: result has no dimensions (for ex. when x and y are both scalars)
expected[[i]] <- as_dbl(drop(x)) * as_dbl(drop(y))
attributes(expected[[i]]) <- NULL # must be a vector if tdim == NULL
out[[i]] <- bc.d(x, y, op)
}
else if(length(y) == 1L && length(x) == 1L) {
# CASE 2: x and y are both scalar arrays
expected[[i]] <- as.double(x) * as.double(y)
out[[i]] <- bc.d(x, y, op)
}
else if(length(x) == 1L && length(y) > 1L) {
# CASE 3: x is scalar, y is not
expected[[i]] <- as.double(x) * rep_dim(as_dbl(y), tdim)
out[[i]] <- bc.d(x, y, op)
}
else if(length(y) == 1L && length(x) > 1L) {
# CASE 4: y is scalar, x is not
expected[[i]] <- rep_dim(as_dbl(x), tdim) * as.double(y)
out[[i]] <- bc.d(x, y, op)
}
else {
# CASE 5: x and y are both non-reducible arrays
expected[[i]] <- rep_dim(as_dbl(x), tdim) * rep_dim(as_dbl(y), tdim)
out[[i]] <- bc.d(x, y, op)
}
# END CASES
# R is sometimes inconsistent whether it returns NA or NaN
# for example: NaN + NaN = NA, but NaN - NaN = NaN
# the 'broadcast' package prefers to remain consistent in all NA/NaN cases
# the following code is meant to ensure NaN results turn to NA, like 'broadcast' does
ind.NaN <- is.nan(expected[[i]])
expected[[i]][ind.NaN] <- .return_missing(expected[[i]][ind.NaN])
ind.NaN <- is.nan(out[[i]])
out[[i]][ind.NaN] <- .return_missing(out[[i]][ind.NaN])
# ensure correct dimensions:
dim(expected[[i]]) <- tdim
i <- i + 1L
}
}
}
}
}
enumerate <- enumerate + i # count number of tests
# test results:
expect_equal(
expected, out
)
# divide ====
nres <- 5 * 5 * 5 * 3 * 3 # number of tests performed here
expected <- out <- vector("list", nres)
op <- "/"
i <- 1L
for(iSample in 1:5) { # re-do tests with different random configurations
x.data <- list(
sample(c(TRUE, FALSE, NA), 100, TRUE), # logical
sample(c(-10:10, NA), 100, TRUE), # integer
sample(c(rnorm(10), NA, NaN, Inf, -Inf), 100, TRUE) # double
)
y.data <- list(
sample(c(TRUE, FALSE, NA), 100, TRUE), # logical
sample(c(-10:10, NA), 100, TRUE), # integer
sample(c(rnorm(10), NA, NaN, Inf, -Inf), 100, TRUE) # double
)
for(iDimX in sample(1:8, 3L)) { # different dimensions for x
x.dim <- test_make_dims(iDimX)
x.len <- prod(x.dim)
for(iDimY in sample(1:8, 3L)) { # different dimensions for y
y.dim <- test_make_dims(iDimY)
y.len <- prod(y.dim)
for(iDataX in 1:length(x.data)) { # different data types for x
x <- array(x.data[[iDataX]][1:x.len], dim = x.dim)
for(iDataY in 1:length(y.data)) { # different data types for y
y <- array(y.data[[iDataY]][1:y.len], dim = y.dim)
# PREPARE FOR TEST
tdim <- bc_dim(x, y)
# print(x)
# print(y)
# print(tdim)
# cat("\n")
# DO TESTS BY CASE:
if(is.null(tdim)) {
# CASE 1: result has no dimensions (for ex. when x and y are both scalars)
expected[[i]] <- as_dbl(drop(x)) / as_dbl(drop(y))
attributes(expected[[i]]) <- NULL # must be a vector if tdim == NULL
out[[i]] <- bc.d(x, y, op)
}
else if(length(y) == 1L && length(x) == 1L) {
# CASE 2: x and y are both scalar arrays
expected[[i]] <- as.double(x) / as.double(y)
out[[i]] <- bc.d(x, y, op)
}
else if(length(x) == 1L && length(y) > 1L) {
# CASE 3: x is scalar, y is not
expected[[i]] <- as.double(x) / rep_dim(as_dbl(y), tdim)
out[[i]] <- bc.d(x, y, op)
}
else if(length(y) == 1L && length(x) > 1L) {
# CASE 4: y is scalar, x is not
expected[[i]] <- rep_dim(as_dbl(x), tdim) / as.double(y)
out[[i]] <- bc.d(x, y, op)
}
else {
# CASE 5: x and y are both non-reducible arrays
expected[[i]] <- rep_dim(as_dbl(x), tdim) / rep_dim(as_dbl(y), tdim)
out[[i]] <- bc.d(x, y, op)
}
# END CASES
# R is sometimes inconsistent whether it returns NA or NaN
# for example: NaN + NaN = NA, but NaN - NaN = NaN
# the 'broadcast' package prefers to remain consistent in all NA/NaN cases
# the following code is meant to ensure NaN results turn to NA, like 'broadcast' does
ind.NaN <- is.nan(expected[[i]])
expected[[i]][ind.NaN] <- .return_missing(expected[[i]][ind.NaN])
ind.NaN <- is.nan(out[[i]])
out[[i]][ind.NaN] <- .return_missing(out[[i]][ind.NaN])
# ensure correct dimensions:
dim(expected[[i]]) <- tdim
i <- i + 1L
}
}
}
}
}
enumerate <- enumerate + i # count number of tests
# test results:
expect_equal(
expected, out
)
# power ====
nres <- 5 * 5 * 5 * 3 * 3 # number of tests performed here
expected <- out <- vector("list", nres)
op <- "^"
i <- 1L
for(iSample in 1:5) { # re-do tests with different random configurations
x.data <- list(
sample(c(TRUE, FALSE, NA), 100, TRUE), # logical
sample(c(-10:10, NA), 100, TRUE), # integer
sample(c(rnorm(10), NA, NaN, Inf, -Inf), 100, TRUE) # double
)
y.data <- list(
sample(c(TRUE, FALSE, NA), 100, TRUE), # logical
sample(c(-10:10, NA), 100, TRUE), # integer
sample(c(rnorm(10), NA, NaN, Inf, -Inf), 100, TRUE) # double
)
for(iDimX in sample(1:8, 3L)) { # different dimensions for x
x.dim <- test_make_dims(iDimX)
x.len <- prod(x.dim)
for(iDimY in sample(1:8, 3L)) { # different dimensions for y
y.dim <- test_make_dims(iDimY)
y.len <- prod(y.dim)
for(iDataX in 1:length(x.data)) { # different data types for x
x <- array(x.data[[iDataX]][1:x.len], dim = x.dim)
for(iDataY in 1:length(y.data)) { # different data types for y
y <- array(y.data[[iDataY]][1:y.len], dim = y.dim)
# PREPARE FOR TEST
tdim <- bc_dim(x, y)
# print(x)
# print(y)
# print(tdim)
# cat("\n")
# DO TESTS BY CASE:
if(is.null(tdim)) {
# CASE 1: result has no dimensions (for ex. when x and y are both scalars)
expected[[i]] <- as_dbl(drop(x)) ^ as_dbl(drop(y))
attributes(expected[[i]]) <- NULL # must be a vector if tdim == NULL
out[[i]] <- bc.d(x, y, op)
}
else if(length(y) == 1L && length(x) == 1L) {
# CASE 2: x and y are both scalar arrays
expected[[i]] <- as.double(x) ^ as.double(y)
out[[i]] <- bc.d(x, y, op)
}
else if(length(x) == 1L && length(y) > 1L) {
# CASE 3: x is scalar, y is not
expected[[i]] <- as.double(x) ^ rep_dim(as_dbl(y), tdim)
out[[i]] <- bc.d(x, y, op)
}
else if(length(y) == 1L && length(x) > 1L) {
# CASE 4: y is scalar, x is not
expected[[i]] <- rep_dim(as_dbl(x), tdim) ^ as.double(y)
out[[i]] <- bc.d(x, y, op)
}
else {
# CASE 5: x and y are both non-reducible arrays
expected[[i]] <- rep_dim(as_dbl(x), tdim) ^ rep_dim(as_dbl(y), tdim)
out[[i]] <- bc.d(x, y, op)
}
# END CASES
# R is sometimes inconsistent whether it returns NA or NaN
# for example: NaN + NaN = NA, but NaN - NaN = NaN
# the 'broadcast' package prefers to remain consistent in all NA/NaN cases
# the following code is meant to ensure NaN results turn to NA, like 'broadcast' does
ind.NaN <- is.nan(expected[[i]])
expected[[i]][ind.NaN] <- .return_missing(expected[[i]][ind.NaN])
ind.NaN <- is.nan(out[[i]])
out[[i]][ind.NaN] <- .return_missing(out[[i]][ind.NaN])
# ensure correct dimensions:
dim(expected[[i]]) <- tdim
i <- i + 1L
}
}
}
}
}
enumerate <- enumerate + i # count number of tests
# test results:
expect_equal(
expected, out
)
# pmin ====
nres <- 5 * 5 * 5 * 3 * 3 # number of tests performed here
expected <- out <- vector("list", nres)
op <- "pmin"
i <- 1L
for(iSample in 1:5) { # re-do tests with different random configurations
x.data <- list(
sample(c(TRUE, FALSE, NA), 100, TRUE), # logical
sample(c(-10:10, NA), 100, TRUE), # integer
sample(c(rnorm(10), NA, NaN, Inf, -Inf), 100, TRUE) # double
)
y.data <- list(
sample(c(TRUE, FALSE, NA), 100, TRUE), # logical
sample(c(-10:10, NA), 100, TRUE), # integer
sample(c(rnorm(10), NA, NaN, Inf, -Inf), 100, TRUE) # double
)
for(iDimX in sample(1:8, 3L)) { # different dimensions for x
x.dim <- test_make_dims(iDimX)
x.len <- prod(x.dim)
for(iDimY in sample(1:8, 3L)) { # different dimensions for y
y.dim <- test_make_dims(iDimY)
y.len <- prod(y.dim)
for(iDataX in 1:length(x.data)) { # different data types for x
x <- array(x.data[[iDataX]][1:x.len], dim = x.dim)
for(iDataY in 1:length(y.data)) { # different data types for y
y <- array(y.data[[iDataY]][1:y.len], dim = y.dim)
# PREPARE FOR TEST
tdim <- bc_dim(x, y)
# print(x)
# print(y)
# print(tdim)
# cat("\n")
# DO TESTS BY CASE:
if(is.null(tdim)) {
# CASE 1: result has no dimensions (for ex. when x and y are both scalars)
expected[[i]] <- pmin(as_dbl(drop(x)), as_dbl(drop(y)))
attributes(expected[[i]]) <- NULL # must be a vector if tdim == NULL
out[[i]] <- bc.d(x, y, op)
}
else if(length(y) == 1L && length(x) == 1L) {
# CASE 2: x and y are both scalar arrays
expected[[i]] <- pmin(as.double(x), as.double(y))
out[[i]] <- bc.d(x, y, op)
}
else if(length(x) == 1L && length(y) > 1L) {
# CASE 3: x is scalar, y is not
expected[[i]] <- pmin(as.double(x), rep_dim(as_dbl(y), tdim))
out[[i]] <- bc.d(x, y, op)
}
else if(length(y) == 1L && length(x) > 1L) {
# CASE 4: y is scalar, x is not
expected[[i]] <- pmin(rep_dim(as_dbl(x), tdim), as.double(y))
out[[i]] <- bc.d(x, y, op)
}
else {
# CASE 5: x and y are both non-reducible arrays
expected[[i]] <- pmin(rep_dim(as_dbl(x), tdim), rep_dim(as_dbl(y), tdim))
out[[i]] <- bc.d(x, y, op)
}
# END CASES
# R is sometimes inconsistent whether it returns NA or NaN
# for example: NaN + NaN = NA, but NaN - NaN = NaN
# the 'broadcast' package prefers to remain consistent in all NA/NaN cases
# the following code is meant to ensure NaN results turn to NA, like 'broadcast' does
ind.NaN <- is.nan(expected[[i]])
expected[[i]][ind.NaN] <- .return_missing(expected[[i]][ind.NaN])
ind.NaN <- is.nan(out[[i]])
out[[i]][ind.NaN] <- .return_missing(out[[i]][ind.NaN])
# ensure correct dimensions:
dim(expected[[i]]) <- tdim
i <- i + 1L
}
}
}
}
}
enumerate <- enumerate + i # count number of tests
# test results:
expect_equal(
expected, out
)
# pmax ====
nres <- 5 * 5 * 5 * 3 * 3 # number of tests performed here
expected <- out <- vector("list", nres)
op <- "pmax"
i <- 1L
for(iSample in 1:5) { # re-do tests with different random configurations
x.data <- list(
sample(c(TRUE, FALSE, NA), 100, TRUE), # logical
sample(c(-10:10, NA), 100, TRUE), # integer
sample(c(rnorm(10), NA, NaN, Inf, -Inf), 100, TRUE) # double
)
y.data <- list(
sample(c(TRUE, FALSE, NA), 100, TRUE), # logical
sample(c(-10:10, NA), 100, TRUE), # integer
sample(c(rnorm(10), NA, NaN, Inf, -Inf), 100, TRUE) # double
)
for(iDimX in sample(1:8, 3L)) { # different dimensions for x
x.dim <- test_make_dims(iDimX)
x.len <- prod(x.dim)
for(iDimY in sample(1:8, 3L)) { # different dimensions for y
y.dim <- test_make_dims(iDimY)
y.len <- prod(y.dim)
for(iDataX in 1:length(x.data)) { # different data types for x
x <- array(x.data[[iDataX]][1:x.len], dim = x.dim)
for(iDataY in 1:length(y.data)) { # different data types for y
y <- array(y.data[[iDataY]][1:y.len], dim = y.dim)
# PREPARE FOR TEST
tdim <- bc_dim(x, y)
# print(x)
# print(y)
# print(tdim)
# cat("\n")
# DO TESTS BY CASE:
if(is.null(tdim)) {
# CASE 1: result has no dimensions (for ex. when x and y are both scalars)
expected[[i]] <- pmax(as_dbl(drop(x)), as_dbl(drop(y)))
attributes(expected[[i]]) <- NULL # must be a vector if tdim == NULL
out[[i]] <- bc.d(x, y, op)
}
else if(length(y) == 1L && length(x) == 1L) {
# CASE 2: x and y are both scalar arrays
expected[[i]] <- pmax(as.double(x), as.double(y))
out[[i]] <- bc.d(x, y, op)
}
else if(length(x) == 1L && length(y) > 1L) {
# CASE 3: x is scalar, y is not
expected[[i]] <- pmax(as.double(x), rep_dim(as_dbl(y), tdim))
out[[i]] <- bc.d(x, y, op)
}
else if(length(y) == 1L && length(x) > 1L) {
# CASE 4: y is scalar, x is not
expected[[i]] <- pmax(rep_dim(as_dbl(x), tdim), as.double(y))
out[[i]] <- bc.d(x, y, op)
}
else {
# CASE 5: x and y are both non-reducible arrays
expected[[i]] <- pmax(rep_dim(as_dbl(x), tdim), rep_dim(as_dbl(y), tdim))
out[[i]] <- bc.d(x, y, op)
}
# END CASES
# R is sometimes inconsistent whether it returns NA or NaN
# for example: NaN + NaN = NA, but NaN - NaN = NaN
# the 'broadcast' package prefers to remain consistent in all NA/NaN cases
# the following code is meant to ensure NaN results turn to NA, like 'broadcast' does
ind.NaN <- is.nan(expected[[i]])
expected[[i]][ind.NaN] <- .return_missing(expected[[i]][ind.NaN])
ind.NaN <- is.nan(out[[i]])
out[[i]][ind.NaN] <- .return_missing(out[[i]][ind.NaN])
# ensure correct dimensions:
dim(expected[[i]]) <- tdim
i <- i + 1L
}
}
}
}
}
enumerate <- enumerate + i # count number of tests
# test results:
expect_equal(
expected, out
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.