Nothing
# set-up ====
enumerate <- 0L
errorfun <- function(tt) {
if(isFALSE(tt)) stop(print(tt))
}
test_make_dims <- function(n) {
# make dimensions that are randomly of size 1 or 5:
out <- lapply(1:n, \(n)sample(c(1, 5), 1)) |> unlist()
# check if the dimensions produce a too large object.
# If so, replace one >1L dimension with 1L
if(prod(out) > 5000L) {
ind <- which(out > 1L)[1L]
out[ind] <- 1L
}
return(out)
}
.return_missing <- broadcast:::.return_missing
ab <- broadcast:::.as.broadcaster
gen <- function() {
sample(c(rnorm(10), NA, NaN, Inf, -Inf), 100, TRUE)
}
accept_test <- function(x, y) {
check1 <- broadcast:::.is_numeric_like(x) || broadcast:::.is_numeric_like(y)
check2 <- is.raw(x) || is.raw(y)
if(check1 && check2) {
return(FALSE)
}
else {
return(TRUE)
}
}
# equals ====
nres <- 5 * 6 * 6 * 3 * 3 # number of tests performed here
expected <- out1 <- out2 <- vector("list", nres)
basefun <- function(x, y) {
out <- x == y
return(out)
}
testfun1 <- function(x, y) {
ab(x) == ab(y)
}
testfun2 <- function(x, y) {
bc.rel(x, y, "==")
}
i <- 1L
for(iSample in 1:5) { # re-do tests with different random configurations
x.data <- list(
sample(c(TRUE, FALSE, NA), 100, TRUE), # logical
sample(c(-10:10, NA), 100, TRUE), # integer
gen(), # double,
gen() + gen() * -1i, # complex,
sample(sample(letters, 100, TRUE)), # character
sample(as.raw(0:255), 100) # raw
)
y.data <- list(
sample(c(TRUE, FALSE, NA), 100, TRUE), # logical
sample(c(-10:10, NA), 100, TRUE), # integer
gen(), # double,
gen() + gen() * -1i, # complex,
sample(sample(letters, 100, TRUE)), # character
sample(as.raw(0:255), 100) # raw
)
for(iDimX in sample(1:8, 3L)) { # different dimensions for x
x.dim <- test_make_dims(iDimX)
x.len <- prod(x.dim)
for(iDimY in sample(1:8, 3L)) { # different dimensions for y
y.dim <- test_make_dims(iDimY)
y.len <- prod(y.dim)
for(iDataX in 1:length(x.data)) { # different data types for x
x <- array(x.data[[iDataX]][1:x.len], dim = x.dim)
for(iDataY in 1:length(y.data)) { # different data types for y
y <- array(y.data[[iDataY]][1:y.len], dim = y.dim)
if(accept_test(x, y)) {
# PREPARE FOR TEST
tdim <- bc_dim(x, y)
# print(x)
# print(y)
# print(tdim)
# # cat("\n")
#
# cat("dim(x) = ", dim(x), "\n")
# cat("dim(y) = ", dim(y), "\n")
# DO TESTS BY CASE:
if(is.null(tdim)) {
# CASE 1: result has no dimensions (for ex. when x and y are both scalars)
expected[[i]] <- basefun(drop(x), drop(y))
# attributes(expected[[i]]) <- NULL # must be a vector if tdim == NULL
out1[[i]] <- testfun1(x, y); out2[[i]] <- testfun2(x, y)
}
else if(length(y) == 1L && length(x) == 1L) {
# CASE 2: x and y are both scalar arrays
expected[[i]] <- basefun(as.vector(x), as.vector(y))
out1[[i]] <- testfun1(x, y); out2[[i]] <- testfun2(x, y)
}
else if(length(x) == 1L && length(y) > 1L) {
# CASE 3: x is scalar, y is not
expected[[i]] <- basefun(as.vector(x), rep_dim(y, tdim))
out1[[i]] <- testfun1(x, y); out2[[i]] <- testfun2(x, y)
}
else if(length(y) == 1L && length(x) > 1L) {
# CASE 4: y is scalar, x is not
expected[[i]] <- basefun(rep_dim(x, tdim), as.vector(y))
out1[[i]] <- testfun1(x, y); out2[[i]] <- testfun2(x, y)
}
else {
# CASE 5: x and y are both non-reducible arrays
expected[[i]] <- basefun(rep_dim(x, tdim), rep_dim(y, tdim))
out1[[i]] <- testfun1(x, y); out2[[i]] <- testfun2(x, y)
}
# END CASES
# R is sometimes inconsistent whether it returns NA or NaN
# for example: NaN + NaN = NA, but NaN - NaN = NaN
# the 'broadcast' package prefers to remain consistent in all NA/NaN cases
# the following code is meant to ensure NaN results turn to NA, like 'broadcast' does
ind.NaN <- is.nan(expected[[i]])
expected[[i]][ind.NaN] <- .return_missing(expected[[i]][ind.NaN])
ind.NaN <- is.nan(out1[[i]])
out1[[i]][ind.NaN] <- .return_missing(out1[[i]][ind.NaN])
ind.NaN <- is.nan(out2[[i]])
out2[[i]][ind.NaN] <- .return_missing(out2[[i]][ind.NaN])
dim(expected[[i]]) <- tdim
out1[[i]] <- unclass(out1[[i]]) # because broadcaster attribute is preserved
i <- i + 2L
}
}
}
}
}
}
enumerate <- enumerate + i # count number of tests
# test results:
expect_equal(
expected, out1
)
expect_equal(
expected, out2
)
# unequals ====
nres <- 5 * 6 * 6 * 3 * 3 # number of tests performed here
expected <- out1 <- out2 <- vector("list", nres)
basefun <- function(x, y) {
out <- x != y
return(out)
}
testfun1 <- function(x, y) {
ab(x) != ab(y)
}
testfun2 <- function(x, y) {
bc.rel(x, y, "!=")
}
i <- 1L
for(iSample in 1:5) { # re-do tests with different random configurations
x.data <- list(
sample(c(TRUE, FALSE, NA), 100, TRUE), # logical
sample(c(-10:10, NA), 100, TRUE), # integer
gen(), # double,
gen() + gen() * -1i, # complex,
sample(sample(letters, 100, TRUE)), # character
sample(as.raw(0:255), 100) # raw
)
y.data <- list(
sample(c(TRUE, FALSE, NA), 100, TRUE), # logical
sample(c(-10:10, NA), 100, TRUE), # integer
gen(), # double,
gen() + gen() * -1i, # complex,
sample(sample(letters, 100, TRUE)), # character
sample(as.raw(0:255), 100) # raw
)
for(iDimX in sample(1:8, 3L)) { # different dimensions for x
x.dim <- test_make_dims(iDimX)
x.len <- prod(x.dim)
for(iDimY in sample(1:8, 3L)) { # different dimensions for y
y.dim <- test_make_dims(iDimY)
y.len <- prod(y.dim)
for(iDataX in 1:length(x.data)) { # different data types for x
x <- array(x.data[[iDataX]][1:x.len], dim = x.dim)
for(iDataY in 1:length(y.data)) { # different data types for y
y <- array(y.data[[iDataY]][1:y.len], dim = y.dim)
if(accept_test(x, y)) {
# PREPARE FOR TEST
tdim <- bc_dim(x, y)
# print(x)
# print(y)
# print(tdim)
# # cat("\n")
#
# cat("dim(x) = ", dim(x), "\n")
# cat("dim(y) = ", dim(y), "\n")
# DO TESTS BY CASE:
if(is.null(tdim)) {
# CASE 1: result has no dimensions (for ex. when x and y are both scalars)
expected[[i]] <- basefun(drop(x), drop(y))
# attributes(expected[[i]]) <- NULL # must be a vector if tdim == NULL
out1[[i]] <- testfun1(x, y); out2[[i]] <- testfun2(x, y)
}
else if(length(y) == 1L && length(x) == 1L) {
# CASE 2: x and y are both scalar arrays
expected[[i]] <- basefun(as.vector(x), as.vector(y))
out1[[i]] <- testfun1(x, y); out2[[i]] <- testfun2(x, y)
}
else if(length(x) == 1L && length(y) > 1L) {
# CASE 3: x is scalar, y is not
expected[[i]] <- basefun(as.vector(x), rep_dim(y, tdim))
out1[[i]] <- testfun1(x, y); out2[[i]] <- testfun2(x, y)
}
else if(length(y) == 1L && length(x) > 1L) {
# CASE 4: y is scalar, x is not
expected[[i]] <- basefun(rep_dim(x, tdim), as.vector(y))
out1[[i]] <- testfun1(x, y); out2[[i]] <- testfun2(x, y)
}
else {
# CASE 5: x and y are both non-reducible arrays
expected[[i]] <- basefun(rep_dim(x, tdim), rep_dim(y, tdim))
out1[[i]] <- testfun1(x, y); out2[[i]] <- testfun2(x, y)
}
# END CASES
# R is sometimes inconsistent whether it returns NA or NaN
# for example: NaN + NaN = NA, but NaN - NaN = NaN
# the 'broadcast' package prefers to remain consistent in all NA/NaN cases
# the following code is meant to ensure NaN results turn to NA, like 'broadcast' does
ind.NaN <- is.nan(expected[[i]])
expected[[i]][ind.NaN] <- .return_missing(expected[[i]][ind.NaN])
ind.NaN <- is.nan(out1[[i]])
out1[[i]][ind.NaN] <- .return_missing(out1[[i]][ind.NaN])
ind.NaN <- is.nan(out2[[i]])
out2[[i]][ind.NaN] <- .return_missing(out2[[i]][ind.NaN])
dim(expected[[i]]) <- tdim
out1[[i]] <- unclass(out1[[i]]) # because broadcaster attribute is preserved
i <- i + 2L
}
}
}
}
}
}
enumerate <- enumerate + i # count number of tests
# test results:
expect_equal(
expected, out1
)
expect_equal(
expected, out2
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.