Nothing
#' @title Computes posterior draws of structural shock conditional standard deviations
#'
#' @description Each of the draws from the posterior estimation of models is
#' transformed into a draw from the posterior distribution of the structural
#' shock conditional standard deviations.
#'
#' @param posterior posterior estimation outcome obtained by running the
#' \code{estimate} function. The interpretation depends on the normalisation of
#' the shocks using function \code{normalise_posterior()}. Verify if the default
#' settings are appropriate.
#'
#' @return An object of class \code{PosteriorSigma}, that is, an \code{NxTxS}
#' array with attribute \code{PosteriorSigma} containing \code{S} draws of the
#' structural shock conditional standard deviations.
#'
#' @seealso \code{\link{estimate}}, \code{\link{normalise_posterior}}, \code{\link{summary}}
#'
#' @author Tomasz Woźniak \email{wozniak.tom@pm.me}
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar$new(us_fiscal_lsuw, p = 1)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute structural shocks' conditional standard deviations
#' sigma = compute_conditional_sd(posterior)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar$new(p = 1) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_conditional_sd() -> csd
#'
#' @export
compute_conditional_sd <- function(posterior) {
UseMethod("compute_conditional_sd", posterior)
}
#' @method compute_conditional_sd PosteriorBSVAR
#'
#' @title Computes posterior draws of structural shock conditional standard deviations
#'
#' @description Each of the draws from the posterior estimation of models is
#' transformed into a draw from the posterior distribution of the structural
#' shock conditional standard deviations.
#'
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVAR} obtained by running the \code{estimate} function.
#'
#' @return An object of class \code{PosteriorSigma}, that is, an \code{NxTxS}
#' array with attribute \code{PosteriorSigma} containing \code{S} draws of the
#' structural shock conditional standard deviations.
#'
#' @seealso \code{\link{estimate}}, \code{\link{normalise_posterior}}, \code{\link{summary}}
#'
#' @author Tomasz Woźniak \email{wozniak.tom@pm.me}
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar$new(us_fiscal_lsuw, p = 1)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute structural shocks' conditional standard deviations
#' sigma = compute_conditional_sd(posterior)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar$new(p = 1) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_conditional_sd() -> csd
#'
#' @export
compute_conditional_sd.PosteriorBSVAR <- function(posterior) {
Y = posterior$last_draw$data_matrices$Y
N = nrow(Y)
T = ncol(Y)
S = dim(posterior$posterior$A)[3]
posterior_sigma = array(1, c(N, T, S), dimnames = list(rownames(Y), colnames(Y), 1:S))
message("The model is homoskedastic. Returning an NxTxS matrix of conditional sd all equal to 1.")
class(posterior_sigma) = "PosteriorSigma"
return(posterior_sigma)
}
#' @method compute_conditional_sd PosteriorBSVARMSH
#'
#' @title Computes posterior draws of structural shock conditional standard deviations
#'
#' @description Each of the draws from the posterior estimation of models is
#' transformed into a draw from the posterior distribution of the structural
#' shock conditional standard deviations.
#'
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVARMSH} obtained by running the \code{estimate} function.
#'
#' @return An object of class \code{PosteriorSigma}, that is, an \code{NxTxS}
#' array with attribute \code{PosteriorSigma} containing \code{S} draws of the
#' structural shock conditional standard deviations.
#'
#' @seealso \code{\link{estimate}}, \code{\link{normalise_posterior}}, \code{\link{summary}}
#'
#' @author Tomasz Woźniak \email{wozniak.tom@pm.me}
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar_msh$new(us_fiscal_lsuw, p = 1, M = 2)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute structural shocks' conditional standard deviations
#' csd = compute_conditional_sd(posterior)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar_msh$new(p = 1, M = 2) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_conditional_sd() -> csd
#'
#' @export
compute_conditional_sd.PosteriorBSVARMSH <- function(posterior) {
Y = posterior$last_draw$data_matrices$Y
posterior_sigma = posterior$posterior$sigma
S = dim(posterior_sigma)[3]
class(posterior_sigma) = "PosteriorSigma"
dimnames(posterior_sigma) = list(rownames(Y), colnames(Y), 1:S)
return(posterior_sigma)
}
#' @method compute_conditional_sd PosteriorBSVARMIX
#'
#' @title Computes posterior draws of structural shock conditional standard deviations
#'
#' @description Each of the draws from the posterior estimation of models is
#' transformed into a draw from the posterior distribution of the structural
#' shock conditional standard deviations.
#'
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVARMIX} obtained by running the \code{estimate} function.
#'
#' @return An object of class \code{PosteriorSigma}, that is, an \code{NxTxS}
#' array with attribute \code{PosteriorSigma} containing \code{S} draws of the
#' structural shock conditional standard deviations.
#'
#' @seealso \code{\link{estimate}}, \code{\link{normalise_posterior}}, \code{\link{summary}}
#'
#' @author Tomasz Woźniak \email{wozniak.tom@pm.me}
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar_mix$new(us_fiscal_lsuw, p = 1, M = 2)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute structural shocks' conditional standard deviations
#' csd = compute_conditional_sd(posterior)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar_mix$new(p = 1, M = 2) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_conditional_sd() -> csd
#'
#' @export
compute_conditional_sd.PosteriorBSVARMIX <- function(posterior) {
Y = posterior$last_draw$data_matrices$Y
posterior_sigma = posterior$posterior$sigma
S = dim(posterior_sigma)[3]
class(posterior_sigma) = "PosteriorSigma"
dimnames(posterior_sigma) = list(rownames(Y), colnames(Y), 1:S)
return(posterior_sigma)
}
#' @method compute_conditional_sd PosteriorBSVARSV
#'
#' @title Computes posterior draws of structural shock conditional standard deviations
#'
#' @description Each of the draws from the posterior estimation of models is
#' transformed into a draw from the posterior distribution of the structural
#' shock conditional standard deviations.
#'
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVARSV} obtained by running the \code{estimate} function.
#'
#' @return An object of class \code{PosteriorSigma}, that is, an \code{NxTxS}
#' array with attribute \code{PosteriorSigma} containing \code{S} draws of the
#' structural shock conditional standard deviations.
#'
#' @seealso \code{\link{estimate}}, \code{\link{normalise_posterior}}, \code{\link{summary}}
#'
#' @author Tomasz Woźniak \email{wozniak.tom@pm.me}
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar_sv$new(us_fiscal_lsuw, p = 1)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute structural shocks' conditional standard deviations
#' csd = compute_conditional_sd(posterior)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar_sv$new(p = 1) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_conditional_sd() -> csd
#'
#' @export
compute_conditional_sd.PosteriorBSVARSV <- function(posterior) {
Y = posterior$last_draw$data_matrices$Y
posterior_sigma = posterior$posterior$sigma
S = dim(posterior_sigma)[3]
class(posterior_sigma) = "PosteriorSigma"
dimnames(posterior_sigma) = list(rownames(Y), colnames(Y), 1:S)
return(posterior_sigma)
}
#' @method compute_conditional_sd PosteriorBSVART
#'
#' @title Computes posterior draws of structural shock conditional standard deviations
#'
#' @description Each of the draws from the posterior estimation of models is
#' transformed into a draw from the posterior distribution of the structural
#' shock conditional standard deviations.
#'
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVART} obtained by running the \code{estimate} function.
#'
#' @return An object of class \code{PosteriorSigma}, that is, an \code{NxTxS}
#' array with attribute \code{PosteriorSigma} containing \code{S} draws of the
#' structural shock conditional standard deviations.
#'
#' @seealso \code{\link{estimate}}, \code{\link{normalise_posterior}}, \code{\link{summary}}
#'
#' @author Tomasz Woźniak \email{wozniak.tom@pm.me}
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar_t$new(us_fiscal_lsuw, p = 1)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute structural shocks' conditional standard deviations
#' sigma = compute_conditional_sd(posterior)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar_t$new(p = 1) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_conditional_sd() -> csd
#'
#' @export
compute_conditional_sd.PosteriorBSVART <- function(posterior) {
Y = posterior$last_draw$data_matrices$Y
N = dim(posterior$posterior$B)[1]
T = dim(posterior$posterior$lambda)[1]
S = dim(posterior$posterior$lambda)[2]
posterior_sigma = array(NA, c(N,T,S), dimnames = list(rownames(Y), colnames(Y), 1:S))
for (n in 1:N) {
posterior_sigma[n,,] = sqrt(posterior$posterior$lambda)
}
class(posterior_sigma) = "PosteriorSigma"
return(posterior_sigma)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.