Nothing
#' @title Computes posterior draws from data predictive density
#'
#' @description Each of the draws from the posterior estimation of models from
#' packages \pkg{bsvars} or \pkg{bsvarSIGNs} is transformed into
#' a draw from the data predictive density.
#'
#' @param posterior posterior estimation outcome
#' obtained by running the \code{estimate} function.
#'
#' @return An object of class \code{PosteriorFitted}, that is, an \code{NxTxS}
#' array with attribute \code{PosteriorFitted} containing \code{S} draws from
#' the data predictive density.
#'
#' @seealso \code{\link{estimate}}, \code{\link{summary}}
#'
#' @author Tomasz Woźniak \email{wozniak.tom@pm.me}
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar$new(us_fiscal_lsuw, p = 1)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute draws from in-sample predictive density
#' fitted = compute_fitted_values(posterior)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar$new(p = 1) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_fitted_values() -> fitted
#'
#' @export
compute_fitted_values <- function(posterior) {
UseMethod("compute_fitted_values", posterior)
}
#' @method compute_fitted_values PosteriorBSVAR
#'
#' @title Computes posterior draws from data predictive density
#'
#' @description Each of the draws from the posterior estimation of models from
#' packages \pkg{bsvars} or \pkg{bsvarSIGNs} is transformed into
#' a draw from the data predictive density.
#'
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVAR} obtained by running the \code{estimate} function.
#'
#' @return An object of class \code{PosteriorFitted}, that is, an \code{NxTxS}
#' array with attribute \code{PosteriorFitted} containing \code{S} draws from
#' the data predictive density.
#'
#' @seealso \code{\link{estimate}}, \code{\link{summary}}
#'
#' @author Tomasz Woźniak \email{wozniak.tom@pm.me}
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar$new(us_fiscal_lsuw, p = 1)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute draws from in-sample predictive density
#' fitted = compute_fitted_values(posterior)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar$new(p = 1) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_fitted_values() -> fitted
#'
#' @export
compute_fitted_values.PosteriorBSVAR <- function(posterior) {
Y = posterior$last_draw$data_matrices$Y
posterior_A = posterior$posterior$A
posterior_B = posterior$posterior$B
N = dim(posterior_A)[1]
T = dim(posterior$last_draw$data_matrices$X)[2]
S = dim(posterior_A)[3]
posterior_sigma = array(1, c(N, T, S))
X = posterior$last_draw$data_matrices$X
fv = .Call(`_bsvars_bsvars_fitted_values`, posterior_A, posterior_B, posterior_sigma, X)
class(fv) = "PosteriorFitted"
S = dim(posterior_A)[3]
dimnames(fv) = list(rownames(Y), colnames(Y), 1:S)
return(fv)
}
#' @method compute_fitted_values PosteriorBSVARMSH
#'
#' @title Computes posterior draws from data predictive density
#'
#' @description Each of the draws from the posterior estimation of models from
#' packages \pkg{bsvars} or \pkg{bsvarSIGNs} is transformed into
#' a draw from the data predictive density.
#'
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVARMSH} obtained by running the \code{estimate} function.
#'
#' @return An object of class \code{PosteriorFitted}, that is, an \code{NxTxS}
#' array with attribute \code{PosteriorFitted} containing \code{S} draws from
#' the data predictive density.
#'
#' @seealso \code{\link{estimate}}, \code{\link{summary}}
#'
#' @author Tomasz Woźniak \email{wozniak.tom@pm.me}
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar_msh$new(us_fiscal_lsuw, p = 1, M = 2)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute draws from in-sample predictive density
#' csd = compute_fitted_values(posterior)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar_msh$new(p = 1, M = 2) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_fitted_values() -> csd
#'
#' @export
compute_fitted_values.PosteriorBSVARMSH <- function(posterior) {
Y = posterior$last_draw$data_matrices$Y
posterior_A = posterior$posterior$A
posterior_B = posterior$posterior$B
posterior_sigma = posterior$posterior$sigma
X = posterior$last_draw$data_matrices$X
fv = .Call(`_bsvars_bsvars_fitted_values`, posterior_A, posterior_B, posterior_sigma, X)
class(fv) = "PosteriorFitted"
S = dim(posterior_A)[3]
dimnames(fv) = list(rownames(Y), colnames(Y), 1:S)
return(fv)
}
#' @method compute_fitted_values PosteriorBSVARMIX
#'
#' @title Computes posterior draws from data predictive density
#'
#' @description Each of the draws from the posterior estimation of models from
#' packages \pkg{bsvars} or \pkg{bsvarSIGNs} is transformed into
#' a draw from the data predictive density.
#'
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVARMIX} obtained by running the \code{estimate} function.
#'
#' @return An object of class \code{PosteriorFitted}, that is, an \code{NxTxS}
#' array with attribute \code{PosteriorFitted} containing \code{S} draws from
#' the data predictive density.
#'
#' @seealso \code{\link{estimate}}, \code{\link{summary}}
#'
#' @author Tomasz Woźniak \email{wozniak.tom@pm.me}
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar_mix$new(us_fiscal_lsuw, p = 1, M = 2)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute draws from in-sample predictive density
#' csd = compute_fitted_values(posterior)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar_mix$new(p = 1, M = 2) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_fitted_values() -> csd
#'
#' @export
compute_fitted_values.PosteriorBSVARMIX <- function(posterior) {
Y = posterior$last_draw$data_matrices$Y
posterior_A = posterior$posterior$A
posterior_B = posterior$posterior$B
posterior_sigma = posterior$posterior$sigma
X = posterior$last_draw$data_matrices$X
fv = .Call(`_bsvars_bsvars_fitted_values`, posterior_A, posterior_B, posterior_sigma, X)
class(fv) = "PosteriorFitted"
S = dim(posterior_A)[3]
dimnames(fv) = list(rownames(Y), colnames(Y), 1:S)
return(fv)
}
#' @method compute_fitted_values PosteriorBSVARSV
#'
#' @title Computes posterior draws from data predictive density
#'
#' @description Each of the draws from the posterior estimation of models from
#' packages \pkg{bsvars} or \pkg{bsvarSIGNs} is transformed into
#' a draw from the data predictive density.
#'
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVARSV} obtained by running the \code{estimate} function.
#'
#' @return An object of class \code{PosteriorFitted}, that is, an \code{NxTxS}
#' array with attribute \code{PosteriorFitted} containing \code{S} draws from
#' the data predictive density.
#'
#' @seealso \code{\link{estimate}}, \code{\link{summary}}
#'
#' @author Tomasz Woźniak \email{wozniak.tom@pm.me}
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar_sv$new(us_fiscal_lsuw, p = 1)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute draws from in-sample predictive density
#' csd = compute_fitted_values(posterior)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar_sv$new(p = 1) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_fitted_values() -> csd
#'
#' @export
compute_fitted_values.PosteriorBSVARSV <- function(posterior) {
Y = posterior$last_draw$data_matrices$Y
posterior_A = posterior$posterior$A
posterior_B = posterior$posterior$B
posterior_sigma = posterior$posterior$sigma
X = posterior$last_draw$data_matrices$X
fv = .Call(`_bsvars_bsvars_fitted_values`, posterior_A, posterior_B, posterior_sigma, X)
class(fv) = "PosteriorFitted"
S = dim(posterior_A)[3]
dimnames(fv) = list(rownames(Y), colnames(Y), 1:S)
return(fv)
}
#' @method compute_fitted_values PosteriorBSVART
#'
#' @title Computes posterior draws from data predictive density
#'
#' @description Each of the draws from the posterior estimation of the model is
#' transformed into a draw from the data predictive density.
#'
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVART} obtained by running the \code{estimate} function.
#'
#' @return An object of class \code{PosteriorFitted}, that is, an \code{NxTxS}
#' array with attribute \code{PosteriorFitted} containing \code{S} draws from
#' the data predictive density.
#'
#' @seealso \code{\link{estimate}}, \code{\link{summary}}
#'
#' @author Tomasz Woźniak \email{wozniak.tom@pm.me}
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar_t$new(us_fiscal_lsuw, p = 1)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute draws from in-sample predictive density
#' fitted = compute_fitted_values(posterior)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar_t$new(p = 1) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_fitted_values() -> fitted
#'
#' @export
compute_fitted_values.PosteriorBSVART <- function(posterior) {
Y = posterior$last_draw$data_matrices$Y
posterior_A = posterior$posterior$A
posterior_B = posterior$posterior$B
posterior_sigma = compute_conditional_sd(posterior)
X = posterior$last_draw$data_matrices$X
fv = .Call(`_bsvars_bsvars_fitted_values`, posterior_A, posterior_B, posterior_sigma, X)
class(fv) = "PosteriorFitted"
S = dim(posterior_A)[3]
dimnames(fv) = list(rownames(Y), colnames(Y), 1:S)
return(fv)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.