Nothing
#' @title Computes posterior draws of impulse responses
#'
#' @description Each of the draws from the posterior estimation of models from
#' packages \pkg{bsvars} or \pkg{bsvarSIGNs} is transformed into
#' a draw from the posterior distribution of the impulse responses.
#'
#' @param posterior posterior estimation outcome obtained by running the \code{estimate} function.
#' The interpretation depends on the normalisation of the shocks
#' using function \code{normalise_posterior()}. Verify if the default settings are appropriate.
#' @param horizon a positive integer number denoting the forecast horizon for the impulse responses computations.
#' @param standardise a logical value. If \code{TRUE}, the impulse responses are standardised
#' so that the variables' own shocks at horizon 0 are equal to 1. Otherwise, the parameter estimates
#' determine this magnitude.
#'
#' @return An object of class PosteriorIR, that is, an \code{NxNx(horizon+1)xS} array with attribute PosteriorIR
#' containing \code{S} draws of the impulse responses.
#'
#' @seealso \code{\link{estimate}}, \code{\link{normalise_posterior}}, \code{\link{summary}}
#'
#' @author Tomasz Woźniak \email{wozniak.tom@pm.me}
#'
#' @references
#' Kilian, L., & Lütkepohl, H. (2017). Structural VAR Tools, Chapter 4, In: Structural vector autoregressive analysis. Cambridge University Press.
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar$new(us_fiscal_lsuw, p = 1)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute impulse responses 2 years ahead
#' irf = compute_impulse_responses(posterior, horizon = 8)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar$new(p = 1) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_impulse_responses(horizon = 8) -> ir
#'
#' @export
compute_impulse_responses <- function(posterior, horizon, standardise = FALSE) {
stopifnot("Argument horizon must be a positive integer number." = horizon > 0 & horizon %% 1 == 0)
stopifnot("Argument standardise must be a logical value." = is.logical(standardise) & !is.na(standardise))
UseMethod("compute_impulse_responses", posterior)
}
#' @inherit compute_impulse_responses
#' @method compute_impulse_responses PosteriorBSVAR
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVAR} obtained by running the \code{estimate} function.
#'
#' @export
compute_impulse_responses.PosteriorBSVAR <- function(posterior, horizon, standardise = FALSE) {
Y = posterior$last_draw$data_matrices$Y
posterior_B = posterior$posterior$B
posterior_A = posterior$posterior$A
N = dim(posterior_A)[1]
p = posterior$last_draw$p
S = dim(posterior_A)[3]
qqq = .Call(`_bsvars_bsvars_ir`, posterior_B, posterior_A, horizon, p, standardise)
irfs = array(NA, c(N, N, horizon + 1, S), dimnames = list(rownames(Y), rownames(Y), 0:horizon, 1:S))
for (s in 1:S) irfs[,,,s] = qqq[s][[1]]
class(irfs) = "PosteriorIR"
return(irfs)
}
#' @inherit compute_impulse_responses
#' @method compute_impulse_responses PosteriorBSVARMSH
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVARMSH} obtained by running the \code{estimate} function.
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar_msh$new(us_fiscal_lsuw, p = 1, M = 2)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute impulse responses
#' irfs = compute_impulse_responses(posterior, 4)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar_msh$new(p = 1, M = 2) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_impulse_responses(horizon = 4) -> irfs
#'
#' @export
compute_impulse_responses.PosteriorBSVARMSH <- function(posterior, horizon, standardise = FALSE) {
Y = posterior$last_draw$data_matrices$Y
posterior_B = posterior$posterior$B
posterior_A = posterior$posterior$A
N = dim(posterior_A)[1]
p = posterior$last_draw$p
S = dim(posterior_A)[3]
qqq = .Call(`_bsvars_bsvars_ir`, posterior_B, posterior_A, horizon, p, standardise)
irfs = array(NA, c(N, N, horizon + 1, S), dimnames = list(rownames(Y), rownames(Y), 0:horizon, 1:S))
for (s in 1:S) irfs[,,,s] = qqq[s][[1]]
class(irfs) = "PosteriorIR"
return(irfs)
}
#' @inherit compute_impulse_responses
#' @method compute_impulse_responses PosteriorBSVARMIX
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVARMIX} obtained by running the \code{estimate} function.
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar_mix$new(us_fiscal_lsuw, p = 1, M = 2)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute impulse responses
#' irfs = compute_impulse_responses(posterior, 4)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar_mix$new(p = 1, M = 2) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_impulse_responses(horizon = 4) -> irfs
#'
#' @export
compute_impulse_responses.PosteriorBSVARMIX <- function(posterior, horizon, standardise = FALSE) {
Y = posterior$last_draw$data_matrices$Y
posterior_B = posterior$posterior$B
posterior_A = posterior$posterior$A
N = dim(posterior_A)[1]
p = posterior$last_draw$p
S = dim(posterior_A)[3]
qqq = .Call(`_bsvars_bsvars_ir`, posterior_B, posterior_A, horizon, p, standardise)
irfs = array(NA, c(N, N, horizon + 1, S), dimnames = list(rownames(Y), rownames(Y), 0:horizon, 1:S))
for (s in 1:S) irfs[,,,s] = qqq[s][[1]]
class(irfs) = "PosteriorIR"
return(irfs)
}
#' @inherit compute_impulse_responses
#' @method compute_impulse_responses PosteriorBSVARSV
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVARSV} obtained by running the \code{estimate} function.
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar_sv$new(us_fiscal_lsuw, p = 1)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute impulse responses
#' irfs = compute_impulse_responses(posterior, 4)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar_sv$new(p = 1) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_impulse_responses(horizon = 4) -> irfs
#'
#' @export
compute_impulse_responses.PosteriorBSVARSV <- function(posterior, horizon, standardise = FALSE) {
Y = posterior$last_draw$data_matrices$Y
posterior_B = posterior$posterior$B
posterior_A = posterior$posterior$A
N = dim(posterior_A)[1]
p = posterior$last_draw$p
S = dim(posterior_A)[3]
qqq = .Call(`_bsvars_bsvars_ir`, posterior_B, posterior_A, horizon, p, standardise)
irfs = array(NA, c(N, N, horizon + 1, S), dimnames = list(rownames(Y), rownames(Y), 0:horizon, 1:S))
for (s in 1:S) irfs[,,,s] = qqq[s][[1]]
class(irfs) = "PosteriorIR"
return(irfs)
}
#' @inherit compute_impulse_responses
#' @method compute_impulse_responses PosteriorBSVART
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVART} obtained by running the \code{estimate} function.
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar_t$new(us_fiscal_lsuw, p = 1)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute impulse responses
#' irfs = compute_impulse_responses(posterior, 4)
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar_t$new(p = 1) |>
#' estimate(S = 10) |>
#' estimate(S = 20) |>
#' compute_impulse_responses(horizon = 4) -> irfs
#'
#' @export
compute_impulse_responses.PosteriorBSVART <- function(posterior, horizon, standardise = FALSE) {
Y = posterior$last_draw$data_matrices$Y
posterior_B = posterior$posterior$B
posterior_A = posterior$posterior$A
N = dim(posterior_A)[1]
p = posterior$last_draw$p
S = dim(posterior_A)[3]
qqq = .Call(`_bsvars_bsvars_ir`, posterior_B, posterior_A, horizon, p, standardise)
irfs = array(NA, c(N, N, horizon + 1, S), dimnames = list(rownames(Y), rownames(Y), 0:horizon, 1:S))
for (s in 1:S) irfs[,,,s] = qqq[s][[1]]
class(irfs) = "PosteriorIR"
return(irfs)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.