Nothing
#' @title Computes posterior draws of regime probabilities
#'
#' @description Each of the draws from the posterior estimation of a model is transformed into
#' a draw from the posterior distribution of the regime probabilities. These represent either
#' the realisations of the regime indicators, when \code{type = "realized"}, filtered probabilities,
#' when \code{type = "filtered"}, forecasted regime probabilities, when \code{type = "forecasted"},
#' or the smoothed probabilities, when \code{type = "smoothed"}, .
#'
#' @param posterior posterior estimation outcome of regime-dependent heteroskedastic models
#' - an object of either of the classes: PosteriorBSVARMSH, or PosteriorBSVARMIX
#' obtained by running the \code{estimate} function.
#' @param type one of the values \code{"realized"}, \code{"filtered"}, \code{"forecasted"}, or \code{"smoothed"}
#' denoting the type of probabilities to be computed.
#'
#' @return An object of class PosteriorRegimePr, that is, an \code{MxTxS} array with attribute PosteriorRegimePr
#' containing \code{S} draws of the regime probabilities.
#'
#' @seealso \code{\link{estimate}}, \code{\link{summary}}
#'
#' @author Tomasz Woźniak \email{wozniak.tom@pm.me}
#'
#' @references
#' Song, Y., and Woźniak, T., (2021) Markov Switching. \emph{Oxford Research Encyclopedia of Economics and Finance}, Oxford University Press, \doi{10.1093/acrefore/9780190625979.013.174}.
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar_msh$new(us_fiscal_lsuw, p = 2, M = 2)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute the posterior draws of realized regime indicators
#' regimes = compute_regime_probabilities(posterior)
#'
#' # compute the posterior draws of filtered probabilities
#' filtered = compute_regime_probabilities(posterior, "filtered")
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar_msh$new(p = 1, M = 2) |>
#' estimate(S = 10) |>
#' estimate(S = 20) -> posterior
#' regimes = compute_regime_probabilities(posterior)
#' filtered = compute_regime_probabilities(posterior, "filtered")
#'
#' @export
compute_regime_probabilities <- function(posterior, type = c("realized", "filtered", "forecasted", "smoothed")) {
UseMethod("compute_regime_probabilities", posterior)
}
#' @inherit compute_regime_probabilities
#' @method compute_regime_probabilities PosteriorBSVARMSH
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVARMSH} obtained by running the \code{estimate} function.
#'
#' @export
compute_regime_probabilities.PosteriorBSVARMSH <- function(posterior, type = c("realized", "filtered", "forecasted", "smoothed")) {
type = match.arg(type)
posteriors = posterior$posterior
Y = posterior$last_draw$data_matrices$Y
X = posterior$last_draw$data_matrices$X
if (type == "realized") {
probs = posteriors$xi
} else {
if (type == "filtered") {
forecasted = FALSE
smoothed = FALSE
} else if (type == "forecasted") {
forecasted = TRUE
smoothed = FALSE
} else if (type == "smoothed") {
forecasted = FALSE
smoothed = TRUE
}
probs = .Call(`_bsvars_bsvars_filter_forecast_smooth`, posteriors, Y, X, forecasted, smoothed)
}
class(probs) = "PosteriorRegimePr"
M = dim(posterior$posterior$xi)[1]
S = dim(posterior$posterior$xi)[3]
dimnames(probs) = list(1:M, colnames(Y), 1:S)
return(probs)
}
#' @inherit compute_regime_probabilities
#' @method compute_regime_probabilities PosteriorBSVARMIX
#' @param posterior posterior estimation outcome - an object of class
#' \code{PosteriorBSVARMIX} obtained by running the \code{estimate} function.
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' set.seed(123)
#' specification = specify_bsvar_mix$new(us_fiscal_lsuw, p = 2, M = 2)
#'
#' # run the burn-in
#' burn_in = estimate(specification, 10)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 20)
#'
#' # compute the posterior draws of realized regime indicators
#' regimes = compute_regime_probabilities(posterior)
#'
#' # compute the posterior draws of filtered probabilities
#' filtered = compute_regime_probabilities(posterior, "filtered")
#'
#' # workflow with the pipe |>
#' ############################################################
#' set.seed(123)
#' us_fiscal_lsuw |>
#' specify_bsvar_mix$new(p = 1, M = 2) |>
#' estimate(S = 10) |>
#' estimate(S = 20) -> posterior
#' regimes = compute_regime_probabilities(posterior)
#' filtered = compute_regime_probabilities(posterior, "filtered")
#'
#' @export
compute_regime_probabilities.PosteriorBSVARMIX <- function(posterior, type = c("realized", "filtered", "forecasted", "smoothed")) {
type = match.arg(type)
posteriors = posterior$posterior
Y = posterior$last_draw$data_matrices$Y
X = posterior$last_draw$data_matrices$X
if (type == "realized") {
probs = posteriors$xi
} else {
if (type == "filtered") {
forecasted = FALSE
smoothed = FALSE
} else if (type == "forecasted") {
forecasted = TRUE
smoothed = FALSE
} else if (type == "smoothed") {
forecasted = FALSE
smoothed = TRUE
}
probs = .Call(`_bsvars_bsvars_filter_forecast_smooth`, posteriors, Y, X, forecasted, smoothed)
}
class(probs) = "PosteriorRegimePr"
M = dim(posterior$posterior$xi)[1]
S = dim(posterior$posterior$xi)[3]
dimnames(probs) = list(1:M, colnames(Y), 1:S)
return(probs)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.