Nothing
#' R6 Class Representing PriorBSVARMSH
#'
#' @description
#' The class PriorBSVARMSH presents a prior specification for the bsvar model with Markov Switching Heteroskedasticity.
#'
#' @examples
#' prior = specify_prior_bsvar_msh$new(N = 3, p = 1, M = 2) # specify the prior
#' prior$A # show autoregressive prior mean
#'
#' @export
specify_prior_bsvar_msh = R6::R6Class(
"PriorBSVARMSH",
inherit = specify_prior_bsvar,
public = list(
#' @field A an \code{NxK} matrix, the mean of the normal prior distribution for the parameter matrix \eqn{A}.
A = matrix(),
#' @field A_V_inv a \code{KxK} precision matrix of the normal prior distribution for each of the row of the parameter matrix \eqn{A}. This precision matrix is equation invariant.
A_V_inv = matrix(),
#' @field B_V_inv an \code{NxN} precision matrix of the generalised-normal prior distribution for the structural matrix \eqn{B}. This precision matrix is equation invariant.
B_V_inv = matrix(),
#' @field B_nu a positive integer greater of equal than \code{N}, a shape parameter of the generalised-normal prior distribution for the structural matrix \eqn{B}.
B_nu = NA,
#' @field hyper_nu_B a positive scalar, the shape parameter of the inverted-gamma 2 prior
#' for the overall shrinkage parameter for matrix \eqn{B}.
hyper_nu_B = NA,
#' @field hyper_a_B a positive scalar, the shape parameter of the gamma prior
#' for the second-level hierarchy for the overall shrinkage parameter for matrix \eqn{B}.
hyper_a_B = NA,
#' @field hyper_s_BB a positive scalar, the scale parameter of the inverted-gamma 2 prior
#' for the third-level of hierarchy for overall shrinkage parameter for matrix \eqn{B}.
hyper_s_BB = NA,
#' @field hyper_nu_BB a positive scalar, the shape parameter of the inverted-gamma 2 prior
#' for the third-level of hierarchy for overall shrinkage parameter for matrix \eqn{B}.
hyper_nu_BB = NA,
#' @field hyper_nu_A a positive scalar, the shape parameter of the inverted-gamma 2 prior
#' for the overall shrinkage parameter for matrix \eqn{A}.
hyper_nu_A = NA,
#' @field hyper_a_A a positive scalar, the shape parameter of the gamma prior
#' for the second-level hierarchy for the overall shrinkage parameter for matrix \eqn{A}.
hyper_a_A = NA,
#' @field hyper_s_AA a positive scalar, the scale parameter of the inverted-gamma 2 prior
#' for the third-level of hierarchy for overall shrinkage parameter for matrix \eqn{A}.
hyper_s_AA = NA,
#' @field hyper_nu_AA a positive scalar, the shape parameter of the inverted-gamma 2 prior
#' for the third-level of hierarchy for overall shrinkage parameter for matrix \eqn{A}.
hyper_nu_AA = NA,
#' @field sigma_nu a positive scalar, the shape parameter of the inverted-gamma 2 for MS state-dependent variances of the structural shocks, \eqn{\sigma^2_{n.s_t}}.
sigma_nu = 3,
#' @field sigma_s a positive scalar, the scale parameter of the inverted-gamma 2 for MS state-dependent variances of the structural shocks, \eqn{\sigma^2_{n.s_t}}.
sigma_s = 1,
#' @field PR_TR an \code{MxM} matrix, the matrix of hyper-parameters of the row-specific Dirichlet prior distribution for transition probabilities matrix \eqn{P} of the Markov process \eqn{s_t}.
PR_TR = matrix(),
#' @description
#' Create a new prior specification PriorBSVARMSH.
#' @param N a positive integer - the number of dependent variables in the model.
#' @param p a positive integer - the autoregressive lag order of the SVAR model.
#' @param d a positive integer - the number of \code{exogenous} variables in the model.
#' @param M an integer greater than 1 - the number of Markov process' heteroskedastic regimes.
#' @param stationary an \code{N} logical vector - its element set to \code{FALSE} sets the prior mean for the autoregressive parameters of the \code{N}th equation to the white noise process, otherwise to random walk.
#' @return A new prior specification PriorBSVARMSH.
initialize = function(N, p, d = 0, M, stationary = rep(FALSE, N)){
stopifnot("Argument N must be a positive integer number." = N > 0 & N %% 1 == 0)
stopifnot("Argument p must be a positive integer number." = p > 0 & p %% 1 == 0)
stopifnot("Argument d must be a non-negative integer number." = d >= 0 & d %% 1 == 0)
stopifnot("Argument stationary must be a logical vector of length N." = length(stationary) == N & is.logical(stationary))
stopifnot("Argument M must be an integer number greater than 1." = M > 1 & M %% 1 == 0)
super$initialize(N, p, d, stationary)
self$sigma_nu = 3
self$sigma_s = 1
self$PR_TR = matrix(1, M, M)
}, # END initialize
#' @description
#' Returns the elements of the prior specification PriorBSVARMSH as a \code{list}.
#'
#' @examples
#' # a prior for 3-variable example with four lags and two regimes
#' prior = specify_prior_bsvar_msh$new(N = 3, p = 4, M = 2)
#' prior$get_prior() # show the prior as list
#'
get_prior = function(){
list(
A = self$A,
A_V_inv = self$A_V_inv,
B_V_inv = self$B_V_inv,
B_nu = self$B_nu,
hyper_nu_B = self$hyper_nu_B,
hyper_a_B = self$hyper_a_B,
hyper_s_BB = self$hyper_s_BB,
hyper_nu_BB = self$hyper_nu_BB,
hyper_nu_A = self$hyper_nu_A,
hyper_a_A = self$hyper_a_A,
hyper_s_AA = self$hyper_s_AA,
hyper_nu_AA = self$hyper_nu_AA,
sv_a_ = self$sv_a_,
sv_s_ = self$sv_s_,
sigma_nu = self$sigma_nu,
sigma_s = self$sigma_s,
PR_TR = self$PR_TR
)
} # END get_prior
) # END public
) # END specify_prior_bsvar_msh
#' R6 Class Representing StartingValuesBSVARMSH
#'
#' @description
#' The class StartingValuesBSVARMSH presents starting values for the bsvar model with Markov Switching Heteroskedasticity.
#'
#' @examples
#' # starting values for a bsvar model for a 3-variable system
#' sv = specify_starting_values_bsvar_msh$new(N = 3, p = 1, M = 2, T = 100)
#'
#' @export
specify_starting_values_bsvar_msh = R6::R6Class(
"StartingValuesBSVARMSH",
inherit = specify_starting_values_bsvar,
public = list(
#' @field A an \code{NxK} matrix of starting values for the parameter \eqn{A}.
A = matrix(),
#' @field B an \code{NxN} matrix of starting values for the parameter \eqn{B}.
B = matrix(),
#' @field hyper a \code{(2*N+1)x2} matrix of starting values for the shrinkage hyper-parameters of the
#' hierarchical prior distribution.
hyper = matrix(),
#' @field sigma2 an \code{NxM} matrix of starting values for the MS state-specific variances of the structural shocks. Its elements sum to value \code{M} over the rows.
sigma2 = matrix(),
#' @field PR_TR an \code{MxM} matrix of starting values for the transition probability matrix of the Markov process. Its elements sum to 1 over the rows.
PR_TR = matrix(),
#' @field xi an \code{MxT} matrix of starting values for the Markov process indicator. Its columns are a chosen column of an identity matrix of order \code{M}.
xi = matrix(),
#' @field pi_0 an \code{M}-vector of starting values for state probability at time \code{t=0}. Its elements sum to 1.
pi_0 = numeric(),
#' @description
#' Create new starting values StartingValuesBSVAR-MS.
#' @param N a positive integer - the number of dependent variables in the model.
#' @param p a positive integer - the autoregressive lag order of the SVAR model.
#' @param M an integer greater than 1 - the number of Markov process' heteroskedastic regimes.
#' @param T a positive integer - the the time series dimension of the dependent variable matrix \eqn{Y}.
#' @param d a positive integer - the number of \code{exogenous} variables in the model.
#' @param finiteM a logical value - if true a stationary Markov switching model is estimated. Otherwise, a sparse Markov switching model is estimated in which \code{M=20} and the number of visited states is estimated.
#' @return Starting values StartingValuesBSVAR-MS.
initialize = function(N, p, M, T, d = 0, finiteM = TRUE){
stopifnot("Argument N must be a positive integer number." = N > 0 & N %% 1 == 0)
stopifnot("Argument p must be a positive integer number." = p > 0 & p %% 1 == 0)
stopifnot("Argument M must be an integer number greater than 1." = M > 1 & M %% 1 == 0)
stopifnot("Argument T must be a positive integer number." = T > 0 & T %% 1 == 0)
stopifnot("Argument d must be a non-negative integer number." = d >= 0 & d %% 1 == 0)
stopifnot("Argument finiteM must be a logical value." = is.logical(finiteM) & length(finiteM) == 1)
if (!finiteM) {
M = 20
}
super$initialize(N, p, d)
self$sigma2 = matrix(1, N, M)
self$PR_TR = diag(M)
self$xi = diag(M)[,sample(1:M, T, replace = TRUE)]
self$pi_0 = rep(1/M, M)
}, # END initialize
#' @description
#' Returns the elements of the starting values StartingValuesBSVAR-MS as a \code{list}.
#'
#' @examples
#' # starting values for a homoskedastic bsvar with 1 lag for a 3-variable system
#' sv = specify_starting_values_bsvar_msh$new(N = 3, p = 1, M = 2, T = 100)
#' sv$get_starting_values() # show starting values as list
#'
get_starting_values = function(){
list(
B = self$B,
A = self$A,
hyper = self$hyper,
sigma2 = self$sigma2,
PR_TR = self$PR_TR,
xi = self$xi,
pi_0 = self$pi_0
)
}, # END get_starting_values
#' @description
#' Returns the elements of the starting values StartingValuesBSVARMSH as a \code{list}.
#' @param last_draw a list containing the last draw.
#' @return An object of class StartingValuesBSVAR-MS including the last draw of the current MCMC as the starting value to be passed to the continuation of the MCMC estimation using \code{estimate()}.
#'
#' @examples
#' # starting values for a bsvar model with 1 lag for a 3-variable system
#' sv = specify_starting_values_bsvar_msh$new(N = 3, p = 1, M = 2, T = 100)
#'
#' # Modify the starting values by:
#' sv_list = sv$get_starting_values() # getting them as list
#' sv_list$A <- matrix(rnorm(12), 3, 4) # modifying the entry
#' sv$set_starting_values(sv_list) # providing to the class object
#'
set_starting_values = function(last_draw) {
self$B = last_draw$B
self$A = last_draw$A
self$hyper = last_draw$hyper
self$sigma2 = last_draw$sigma2
self$PR_TR = last_draw$PR_TR
self$xi = last_draw$xi
self$pi_0 = last_draw$pi_0
} # END set_starting_values
) # END public
) # END specify_starting_values_bsvar_msh
#' R6 Class representing the specification of the BSVAR model with Markov Switching Heteroskedasticity.
#'
#' @description
#' The class BSVARMSH presents complete specification for the BSVAR model with Markov Switching Heteroskedasticity.
#'
#' @seealso \code{\link{estimate}}, \code{\link{specify_posterior_bsvar_msh}}
#'
#' @examples
#' data(us_fiscal_lsuw)
#' spec = specify_bsvar_msh$new(
#' data = us_fiscal_lsuw,
#' p = 4,
#' M = 2
#' )
#'
#' @export
specify_bsvar_msh = R6::R6Class(
"BSVARMSH",
public = list(
#' @field p a non-negative integer specifying the autoregressive lag order of the model.
p = numeric(),
#' @field identification an object IdentificationBSVARs with the identifying restrictions.
identification = list(),
#' @field prior an object PriorBSVARMSH with the prior specification.
prior = list(),
#' @field data_matrices an object DataMatricesBSVAR with the data matrices.
data_matrices = list(),
#' @field starting_values an object StartingValuesBSVARMSH with the starting values.
starting_values = list(),
#' @field finiteM a logical value - if true a stationary Markov switching model is estimated. Otherwise, a sparse Markov switching model is estimated in which \code{M=20} and the number of visited states is estimated.
finiteM = logical(),
#' @description
#' Create a new specification of the BSVAR model with Markov Switching Heteroskedasticity, BSVARMSH.
#' @param data a \code{(T+p)xN} matrix with time series data.
#' @param p a positive integer providing model's autoregressive lag order.
#' @param M an integer greater than 1 - the number of Markov process' heteroskedastic regimes.
#' @param B a logical \code{NxN} matrix containing value \code{TRUE} for the elements of the structural matrix \eqn{B} to be estimated and value \code{FALSE} for exclusion restrictions to be set to zero.
#' @param exogenous a \code{(T+p)xd} matrix of exogenous variables.
#' @param stationary an \code{N} logical vector - its element set to \code{FALSE} sets the prior mean for the autoregressive parameters of the \code{N}th equation to the white noise process, otherwise to random walk.
#' @param finiteM a logical value - if true a stationary Markov switching model is estimated. Otherwise, a sparse Markov switching model is estimated in which \code{M=20} and the number of visited states is estimated.
#' @return A new complete specification for the bsvar model with Markov Switching Heteroskedasticity, BSVARMSH.
initialize = function(
data,
p = 1L,
M = 2L,
B,
exogenous = NULL,
stationary = rep(FALSE, ncol(data)),
finiteM = TRUE
) {
stopifnot("Argument p has to be a positive integer." = ((p %% 1) == 0 & p > 0))
self$p = p
TT = nrow(data)
T = TT - self$p
N = ncol(data)
d = 0
if (!is.null(exogenous)) {
d = ncol(exogenous)
}
if (!finiteM) {
if ( M < 20 ) {
M = 20L
message("In the sparse Markov switching model the value of M is overwritten and set to 20.")
}
}
self$finiteM = finiteM
if (missing(B)) {
message("The identification is set to the default option of lower-triangular structural matrix.")
B = matrix(FALSE, N, N)
B[lower.tri(B, diag = TRUE)] = TRUE
}
stopifnot("Incorrectly specified argument B." = (is.matrix(B) & is.logical(B)) | (length(B) == 1 & is.na(B)))
self$data_matrices = specify_data_matrices$new(data, p, exogenous)
self$identification = specify_identification_bsvars$new(N, B)
self$prior = specify_prior_bsvar_msh$new(N, p, d, M, stationary)
self$starting_values = specify_starting_values_bsvar_msh$new(N, self$p, M, T, d, finiteM)
}, # END initialize
#' @description
#' Returns the data matrices as the DataMatricesBSVAR object.
#'
#' @examples
#' data(us_fiscal_lsuw)
#' spec = specify_bsvar_msh$new(
#' data = us_fiscal_lsuw,
#' p = 4,
#' M = 2
#' )
#' spec$get_data_matrices()
#'
get_data_matrices = function() {
self$data_matrices$clone()
}, # END get_data_matrices
#' @description
#' Returns the identifying restrictions as the IdentificationBSVARs object.
#'
#' @examples
#' data(us_fiscal_lsuw)
#' spec = specify_bsvar_msh$new(
#' data = us_fiscal_lsuw,
#' p = 4,
#' M = 2
#' )
#' spec$get_identification()
#'
get_identification = function() {
self$identification$clone()
}, # END get_identification
#' @description
#' Returns the prior specification as the PriorBSVARMSH object.
#'
#' @examples
#' data(us_fiscal_lsuw)
#' spec = specify_bsvar_msh$new(
#' data = us_fiscal_lsuw,
#' p = 4,
#' M = 2
#' )
#' spec$get_prior()
#'
get_prior = function() {
self$prior$clone()
}, # END get_prior
#' @description
#' Returns the starting values as the StartingValuesBSVARMSH object.
#'
#' @examples
#' data(us_fiscal_lsuw)
#' spec = specify_bsvar_msh$new(
#' data = us_fiscal_lsuw,
#' p = 4,
#' M = 2
#' )
#' spec$get_starting_values()
#'
get_starting_values = function() {
self$starting_values$clone()
} # END get_starting_values
) # END public
) # END specify_bsvar_msh
#' R6 Class Representing PosteriorBSVARMSH
#'
#' @description
#' The class PosteriorBSVARMSH contains posterior output and the specification including
#' the last MCMC draw for the bsvar model with Markov Switching Heteroskedasticity.
#' Note that due to the thinning of the MCMC output the starting value in element \code{last_draw}
#' might not be equal to the last draw provided in element \code{posterior}.
#'
#' @seealso \code{\link{estimate}}, \code{\link{specify_bsvar_msh}}
#'
#' @examples
#' # This is a function that is used within estimate()
#' data(us_fiscal_lsuw)
#' specification = specify_bsvar_msh$new(us_fiscal_lsuw, p = 4, M = 2)
#' set.seed(123)
#' estimate = estimate(specification, 10, thin = 1)
#' class(estimate)
#'
#' @export
specify_posterior_bsvar_msh = R6::R6Class(
"PosteriorBSVARMSH",
private = list(
normalised = FALSE
), # END private
public = list(
#' @field last_draw an object of class BSVARMSH with the last draw of the current MCMC run as the starting value to be passed to the continuation of the MCMC estimation using \code{estimate()}.
last_draw = list(),
#' @field posterior a list containing Bayesian estimation output.
posterior = list(),
#' @description
#' Create a new posterior output PosteriorBSVARMSH.
#' @param specification_bsvar an object of class BSVARMSH with the last draw of the current MCMC run as the starting value.
#' @param posterior_bsvar a list containing Bayesian estimation output.
#' @return A posterior output PosteriorBSVARMSH.
initialize = function(specification_bsvar, posterior_bsvar) {
stopifnot("Argument specification_bsvar must be of class BSVARMSH." = any(class(specification_bsvar) == "BSVARMSH"))
stopifnot("Argument posterior_bsvar must must contain MCMC output." = is.list(posterior_bsvar) & is.array(posterior_bsvar$B) & is.array(posterior_bsvar$A) & is.array(posterior_bsvar$hyper) & is.array(posterior_bsvar$xi))
self$last_draw = specification_bsvar
self$posterior = posterior_bsvar
}, # END initialize
#' @description
#' Returns a list containing Bayesian estimation output.
#'
#' @examples
#' data(us_fiscal_lsuw)
#' specification = specify_bsvar_msh$new(us_fiscal_lsuw, M = 2)
#' set.seed(123)
#' estimate = estimate(specification, 10, thin = 1)
#' estimate$get_posterior()
#'
get_posterior = function(){
self$posterior
}, # END get_posterior
#' @description
#' Returns an object of class BSVARMSH with the last draw of the current MCMC run as the starting value to be passed to the continuation of the MCMC estimation using \code{estimate()}.
#'
#' @examples
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' specification = specify_bsvar_msh$new(us_fiscal_lsuw, p = 4, M = 2)
#'
#' # run the burn-in
#' set.seed(123)
#' burn_in = estimate(specification, 10, thin = 2)
#'
#' # estimate the model
#' posterior = estimate(burn_in, 10, thin = 2)
#'
get_last_draw = function(){
self$last_draw$clone()
}, # END get_last_draw
#' @description
#' Returns \code{TRUE} if the posterior has been normalised using \code{normalise_posterior()} and \code{FALSE} otherwise.
#'
#' @examples
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' specification = specify_bsvar_msh$new(us_fiscal_lsuw, p = 4, M = 2)
#'
#' # estimate the model
#' set.seed(123)
#' posterior = estimate(specification, 10, thin = 1)
#'
#' # check normalisation status beforehand
#' posterior$is_normalised()
#'
#' # normalise the posterior
#' BB = posterior$last_draw$starting_values$B # get the last draw of B
#' B_hat = diag((-1) * sign(diag(BB))) %*% BB # set negative diagonal elements
#' normalise_posterior(posterior, B_hat) # draws in posterior are normalised
#'
#' # check normalisation status afterwards
#' posterior$is_normalised()
#'
is_normalised = function(){
private$normalised
}, # END is_normalised
#' @description
#' Sets the private indicator \code{normalised} to TRUE.
#' @param value (optional) a logical value to be passed to indicator \code{normalised}.
#'
#' @examples
#' # This is an internal function that is run while executing normalise_posterior()
#' # Observe its working by analysing the workflow:
#'
#' # upload data
#' data(us_fiscal_lsuw)
#'
#' # specify the model and set seed
#' specification = specify_bsvar_msh$new(us_fiscal_lsuw, p = 4, M = 2)
#' set.seed(123)
#'
#' # estimate the model
#' posterior = estimate(specification, 10, thin = 1)
#'
#' # check normalisation status beforehand
#' posterior$is_normalised()
#'
#' # normalise the posterior
#' BB = posterior$last_draw$starting_values$B # get the last draw of B
#' B_hat = diag(sign(diag(BB))) %*% BB # set positive diagonal elements
#' normalise_posterior(posterior, B_hat) # draws in posterior are normalised
#'
#' # check normalisation status afterwards
#' posterior$is_normalised()
#'
set_normalised = function(value){
if (missing(value)) {
private$normalised <- TRUE
} else {
private$normalised <- value
}
} # END set_normalised
) # END public
) # END specify_posterior_bsvar_msh
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.