Nothing
###########################################################################/**
# @RdocClass CalMaTeCalibration
#
# @title "The CalMaTeCalibration class"
#
# \description{
# @classhierarchy
#
# This class represents the CalMaTe method [1], which
# corrects for SNP effects in allele-specific copy-number estimates
# (ASCNs).
# }
#
# @synopsis
#
# \arguments{
# \item{data}{A named @list with data set named \code{"total"} and
# \code{"fracB"} where the former should be of class
# @see "aroma.core::AromaUnitTotalCnBinarySet" and the latter of
# class @see "aroma.core::AromaUnitFracBCnBinarySet". The
# two data sets must be for the same chip type, have the same
# number of samples and the same sample names.}
# \item{tags}{Tags added to the output data sets.}
# \item{references}{An optional @numeric @vector specifying which samples
# should be as reference samples for estimating the model parameters.
# If @NULL, all samples are used.}
# \item{flavor}{A @character string specifying which flavor of the
# CalMaTe algorithm to use for fitting the model.
# See @see "fitCalMaTeInternal" for details.}
# \item{...}{Additional arguments passed to @see "calmateByTotalAndFracB".}
# }
#
# \section{Fields and Methods}{
# @allmethods "public"
# }
#
# \section{Reference samples}{
# In order to estimate the calibration parameters, the model assumes
# that, for any given SNP, there are a majority of samples that are
# diploid at that SNP. Note that it does not have to be the same set
# of samples for all SNPs.
#
# By using argument \code{references}, it is possible so specify which
# samples should be used when estimating the calibration parameters.
# This is useful when for instance there are several tumor samples with
# unknown properties as well as a set of normal samples that can be
# assumed to be diploid.
#
# Theoretical, a minimum of three reference samples are needed in order
# for the model to be identifiable. If less, an error is thrown.
# However, in practice more reference samples should be used, that is,
# in the order of at least 6-10 reference samples with a diverse set
# of genotypes.
# }
#
# \section{Flavors}{
# For backward compatibility, we try to keep all major versions of
# the CalMaTe algorithm available. Older versions can be used by
# specifying argument \code{flavor}.
# For more information about the different flavors,
# see @see "fitCalMaTeInternal".
# }
#
# \examples{\dontrun{
# @include "../incl/CalMaTeCalibration.Rex"
# }}
#
# \references{
# [1] @include "../incl/OrtizM_etal_2012.Rd" \cr
# }
#
# \seealso{
# Low-level versions of the CalMaTe method is available
# via the @see "calmateByThetaAB" and
# @see "calmateByTotalAndFracB" methods.
#
# For further information on the internal fit functions, see
# @see "fitCalMaTeInternal".
# }
#
#*/###########################################################################
setConstructorS3("CalMaTeCalibration", function(data=NULL, tags="*", references=NULL, flavor=c("v2", "v1"), ...) {
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Validate arguments
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if (!is.null(data)) {
if (!is.list(data)) {
throw("Argument 'data' is not a list: ", class(data)[1]);
}
reqNames <- c("total", "fracB");
ok <- is.element(reqNames, names(data));
if (!all(ok)) {
throw(sprintf("Argument 'data' does not have all required elements (%s): %s", paste(reqNames, collapse=", "), paste(reqNames[!ok], collapse=", ")));
}
data <- data[reqNames];
# Assert correct classes
className <- "AromaUnitTotalCnBinarySet";
ds <- data$total;
if (!inherits(ds, className)) {
throw(sprintf("The 'total' data set is not of class %s: %s", className, class(ds)[1]));
}
className <- "AromaUnitFracBCnBinarySet";
ds <- data$fracB;
if (!inherits(ds, className)) {
throw(sprintf("The 'fracB' data set is not of class %s: %s", className, class(ds)[1]));
}
# Assert that the chip types are compatile
if (getChipType(data$total) != getChipType(data$fracB)) {
throw("The 'total' and 'fracB' data sets have different chip types: ",
getChipType(data$total), " != ", getChipType(data$fracB));
}
# Assert that the data sets have the same number data files
nbrOfFiles <- nbrOfFiles(data$total);
if (nbrOfFiles != nbrOfFiles(data$fracB)) {
throw("The number of samples in 'total' and 'fracB' differ: ",
nbrOfFiles, " != ", nbrOfFiles(data$fracB));
}
# Assert that the data sets have the same samples
if (!identical(getNames(data$total), getNames(data$fracB))) {
throw("The samples in 'total' and 'fracB' have different names.");
}
}
# Argument 'references':
if (!is.null(references)) {
nbrOfFiles <- nbrOfFiles(data$total);
references <- Arguments$getIndices(references, max=nbrOfFiles);
references <- unique(references);
references <- sort(references);
if (length(references) < 3) {
throw("Argument 'references' specifies less than three reference samples: ", length(references));
}
}
# Argument 'flavor':
flavor <- match.arg(flavor);
# Arguments '...'; optional arguments to calmateByTotalAndFracB()
extraArgs <- list(...);
if (length(extraArgs) > 0) {
keys <- names(extraArgs);
if (is.null(keys)) {
throw("Optional arguments to CalMaTeCalibration passed via '...' must be named.");
}
nok <- which(nchar(keys) == 0);
if (length(nok) > 0) {
throw("All arguments to CalMaTeCalibration passed via '...' must be named.");
}
}
this <- extend(Object(), c("CalMaTeCalibration", uses("ParametersInterface")),
.data = data,
.references = references,
.flavor = flavor,
.extraArgs = extraArgs
);
setTags(this, tags);
this;
})
setMethodS3("as.character", "CalMaTeCalibration", function(x, ...) {
# To please R CMD check
this <- x;
s <- sprintf("%s:", class(this)[1]);
dsList <- getDataSets(this);
s <- c(s, sprintf("Data sets (%d):", length(dsList)));
for (kk in seq_along(dsList)) {
ds <- dsList[[kk]];
s <- c(s, sprintf("<%s>:", capitalize(names(dsList)[kk])));
s <- c(s, as.character(ds));
}
refs <- getReferences(this);
nbrOfFiles <- nbrOfFiles(this);
s <- c(s, sprintf("Number of arrays: %d", nbrOfFiles));
nbrOfRefs <- length(refs);
if (nbrOfRefs == 0) {
s <- c(s, "Number of references: <all arrays> (100%)");
} else {
s <- c(s, sprintf("Number of references: %d (%.2f%%)", nbrOfRefs, 100*nbrOfRefs/nbrOfFiles));
}
params <- getParametersAsString(this);
nparams <- length(params);
params <- paste(params, collapse=", ");
s <- c(s, sprintf("Additional parameters: [%d] %s", nparams, params));
class(s) <- "GenericSummary";
s;
}, private=TRUE)
setMethodS3("getAsteriskTags", "CalMaTeCalibration", function(this, collapse=NULL, ...) {
tags <- "CMTN";
tags <- c(tags, this$.flavor);
if (!is.null(collapse)) {
tags <- paste(tags, collapse=collapse);
}
tags;
}, private=TRUE)
setMethodS3("getName", "CalMaTeCalibration", function(this, ...) {
dsList <- getDataSets(this);
ds <- dsList$total;
getName(ds);
})
setMethodS3("getTags", "CalMaTeCalibration", function(this, collapse=NULL, ...) {
# "Pass down" tags from input data set
dsList <- getDataSets(this);
ds <- dsList$total;
tags <- getTags(ds, collapse=collapse);
# Get class-specific tags
tags <- c(tags, this$.tags);
# Update default tags
tags[tags == "*"] <- getAsteriskTags(this, collapse=",");
# Collapsed or split?
if (!is.null(collapse)) {
tags <- paste(tags, collapse=collapse);
} else {
tags <- unlist(strsplit(tags, split=","));
}
if (length(tags) == 0)
tags <- NULL;
tags;
})
setMethodS3("setTags", "CalMaTeCalibration", function(this, tags="*", ...) {
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Validate arguments
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Argument 'tags':
if (!is.null(tags)) {
tags <- Arguments$getCharacters(tags);
tags <- trim(unlist(strsplit(tags, split=",")));
tags <- tags[nchar(tags) > 0];
}
this$.tags <- tags;
})
setMethodS3("getFullName", "CalMaTeCalibration", function(this, ...) {
name <- getName(this);
tags <- getTags(this);
fullname <- paste(c(name, tags), collapse=",");
fullname <- gsub("[,]$", "", fullname);
fullname;
})
setMethodS3("getDataSets", "CalMaTeCalibration", function(this, ...) {
this$.data;
})
setMethodS3("getRootPath", "CalMaTeCalibration", function(this, ...) {
"totalAndFracBData";
})
setMethodS3("getPath", "CalMaTeCalibration", function(this, create=TRUE, ...) {
# Create the (sub-)directory tree for the data set
# Root path
rootPath <- getRootPath(this);
# Full name
fullname <- getFullName(this);
# Chip type
dsList <- getDataSets(this);
ds <- dsList$total;
chipType <- getChipType(ds, fullname=FALSE);
# The full path
path <- filePath(rootPath, fullname, chipType, expandLinks="any");
# Verify that it is not the same as the input path
inPath <- getPath(ds);
if (getAbsolutePath(path) == getAbsolutePath(inPath)) {
throw("The generated output data path equals the input data path: ", path, " == ", inPath);
}
# Create path?
if (create && !isDirectory(path)) mkdirs(path, mustWork=TRUE)
path;
})
setMethodS3("nbrOfFiles", "CalMaTeCalibration", function(this, ...) {
dsList <- getDataSets(this);
ds <- dsList$total;
nbrOfFiles(ds);
})
setMethodS3("getReferences", "CalMaTeCalibration", function(this, ...) {
this$.references;
})
setMethodS3("getParameters", "CalMaTeCalibration", function(this, ...) {
params <- list();
params$references <- getReferences(this);
params$flavor <- this$.flavor;
params <- c(params, this$.extraArgs);
params;
}, protected=TRUE);
setMethodS3("getOutputDataSets", "CalMaTeCalibration", function(this, ..., verbose=FALSE) {
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Validate arguments
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Argument 'verbose':
verbose <- Arguments$getVerbose(verbose);
if (verbose) {
pushState(verbose);
on.exit(popState(verbose));
}
res <- this$.outputDataSets;
if (is.null(res)) {
res <- allocateOutputDataSets(this, ..., verbose=less(verbose, 10));
this$.outputDataSets <- res;
}
res;
})
setMethodS3("allocateOutputDataSets", "CalMaTeCalibration", function(this, ..., verbose=FALSE) {
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Validate arguments
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Argument 'verbose':
verbose <- Arguments$getVerbose(verbose);
if (verbose) {
pushState(verbose);
on.exit(popState(verbose));
}
verbose && enter(verbose, "Retrieve/allocation output data sets");
dsList <- getDataSets(this);
path <- getPath(this);
res <- list();
for (kk in seq_along(dsList)) {
ds <- dsList[[kk]];
verbose && enter(verbose, sprintf("Data set #%d ('%s') of %d",
kk, getName(ds), length(dsList)));
for (ii in seq_along(ds)) {
df <- getFile(ds, ii);
verbose && enter(verbose, sprintf("Data file #%d ('%s') of %d",
ii, getName(df), nbrOfFiles(ds)));
filename <- getFilename(df);
pathname <- Arguments$getReadablePathname(filename, path=path,
mustExist=FALSE);
# Skip?
if (isFile(pathname)) {
verbose && cat(verbose, "Already exists. Skipping.");
verbose && exit(verbose);
next;
}
# Create temporary file (also checks for write permissions)
pathnameT <- pushTemporaryFile(pathname);
# Copy source file
copyFile(getPathname(df), pathnameT);
# Make it empty by filling it will missing values
# AD HOC: We should really allocate from scratch here. /HB 2010-06-21
dfT <- newInstance(df, pathnameT);
dfT[,1] <- NA;
# Renaming temporary file
pathname <- popTemporaryFile(pathnameT);
verbose && cat(verbose, "Copied: ", pathname);
verbose && exit(verbose);
} # for (ii ...)
dsOut <- byPath(ds, path=path, ..., verbose=less(verbose, 10));
# AD HOC: The above byPath() grabs all *.asb files. /HB 2010-06-20
keep <- is.element(sapply(dsOut, FUN=getFilename), sapply(ds, FUN=getFilename));
dsOut <- extract(dsOut, keep);
res[[kk]] <- dsOut;
ds <- dsOut <- NULL ## Not needed anymore
verbose && exit(verbose);
} # for (kk ...)
names(res) <- names(dsList);
this$.outputDataSets <- res;
verbose && exit(verbose);
res;
}, protected=TRUE)
setMethodS3("findUnitsTodo", "CalMaTeCalibration", function(this, ..., verbose=FALSE) {
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Validate arguments
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Argument 'verbose':
verbose <- Arguments$getVerbose(verbose);
if (verbose) {
pushState(verbose);
on.exit(popState(verbose));
}
verbose && enter(verbose, "Finding units to do");
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# (a) Check for missing values in total CNs, because then we will
# check both non-polymorphic loci and SNPs.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
dsList <- getOutputDataSets(this);
dsT <- dsList$total;
verbose && print(verbose, dsT);
fullnames <- getFullNames(dsT);
verbose && str(verbose, fullnames);
o <- order(fullnames, decreasing=TRUE);
idx <- o[1];
dfT <- getFile(dsT, idx);
verbose && print(verbose, dfT);
# Read all values
values <- dfT[,1,drop=TRUE];
nbrOfUnits <- length(values);
verbose && cat(verbose, "Number of units: ", nbrOfUnits);
# Identify all missing values
nokT <- is.na(values);
unitsT <- which(nokT);
verbose && printf(verbose, "Number of TCNs missing values: %d (%.2f%%)\n", length(unitsT), 100*length(unitsT)/nbrOfUnits);
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# (b) In case the BAFs were not stored but the TCNs were, which may
# happen during a user interrupt or power failure and because BAFs
# are stored after TCNs, we must make sure to check those as well.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# The last data set is always updated last
dsB <- dsList$fracB;
verbose && print(verbose, dsB);
# The last file (in lexicographic ordering) is always updated last
# (This should be the same as above, but just in case...)
fullnames <- getFullNames(dsB);
verbose && str(verbose, fullnames);
o <- order(fullnames, decreasing=TRUE);
idx <- o[1];
dfB <- getFile(dsB, idx);
verbose && print(verbose, dfB);
# Read all values
values <- dfB[,1,drop=TRUE];
# Identify all missing values
nokB <- is.na(values);
unitsB <- which(nokB);
verbose && printf(verbose, "Number of BAFs with missing values: %d (%.2f%%)\n", length(unitsB), 100*length(unitsB)/nbrOfUnits);
# Identify units that *may* be unfitted.
nok <- (nokT | nokB);
units <- which(nok);
# Potentially unfitted units?
if (length(units) > 0) {
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# (c) Now, for BAFs we will get missing values for all non-polymorphic
# loci. The problem is that we don't know which they are (without
# turning to chip type-specific annotation data files which cannot
# assume exist). Instead, we will check the corresponding input
# BAF file to see whether those units also have missing values.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
dsList <- getDataSets(this);
# The last data set is always updated last
dsB <- dsList$fracB;
verbose && print(verbose, dsB);
idxs <- indexOf(dsB, getFullName(dfB));
# Sanity check
.stop_if_not(length(idxs) > 0);
idx <- idxs[1];
dfB <- getFile(dsB, idx);
verbose && print(verbose, dfB);
values <- dfB[,1,drop=TRUE];
# Identify all missing values
nokBin <- is.na(values);
unitsB <- which(nokBin);
verbose && printf(verbose, "Number of input BAFs with missing values: %d (%.2f%%)\n", length(unitsB), 100*length(unitsB)/nbrOfUnits);
# Conclusions
nokB <- (nokB & !nokBin);
unitsB <- which(nokB);
verbose && printf(verbose, "Number of BAFs with missing values in output but not in input: %d (%.2f%%)\n", length(unitsB), 100*length(unitsB)/nbrOfUnits);
# Update units that are unfitted.
nok <- (nokT | nokB);
units <- which(nok);
} # if (length(units) > 0)
verbose && printf(verbose, "Number of units to do: %d (%.2f%%)\n",
length(units), 100*length(units)/length(values));
verbose && cat(verbose, "Units to do (with missing values):");
verbose && str(verbose, units);
verbose && exit(verbose);
units;
})
setMethodS3("process", "CalMaTeCalibration", function(this, units="remaining", force=FALSE, ram=NULL, verbose=FALSE, ...) {
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Validate arguments
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
dsList <- getDataSets(this);
dsTCN <- dsList$total;
dsBAF <- dsList$fracB;
# Argument 'units':
if (is.null(units)) {
units <- "remaining";
}
df <- getFile(dsTCN, 1);
nbrOfUnits <- nbrOfUnits(df);
if (identical(units, "remaining")) {
units <- seq_len(nbrOfUnits);
} else {
units <- Arguments$getIndices(units, max=nbrOfUnits);
}
# Argument 'force':
force <- Arguments$getLogical(force);
# Argument 'ram':
ram <- getRam(aromaSettings, ram);
# Argument 'verbose':
verbose <- Arguments$getVerbose(verbose);
if (verbose) {
pushState(verbose);
on.exit(popState(verbose));
}
# Argument '...':
userArgs <- list(...);
if (length(userArgs) > 0) {
if (is.element("references", names(userArgs))) {
throw("Argument 'references' must not be passed via process(), but instead to the CalMaTeCalibration constructor.");
}
warning("Do not pass extra arguments via process(), but instead via CalMaTeCalibration: ", paste(names(userArgs), collapse=", "));
}
verbose && enter(verbose, "CalMaTe calibration of ASCNs");
params <- getParameters(this);
nbrOfFiles <- nbrOfFiles(this);
verbose && cat(verbose, "Number of arrays: ", nbrOfFiles);
references <- params$references;
nbrOfRefs <- length(references);
if (nbrOfRefs == 0L) nbrOfRefs <- nbrOfFiles;
verbose && cat(verbose, "Number of references: ", nbrOfRefs);
verbose && cat(verbose, "Units:");
verbose && str(verbose, units);
verbose && cat(verbose, "All parameters:");
verbose && str(verbose, params);
# Skip already processed units or not?
if (!force) {
verbose && enter(verbose, "Skipping already processed units");
unitsTodo <- findUnitsTodo(this, verbose=less(verbose, 25));
verbose && cat(verbose, "Units remaining:");
verbose && str(verbose, unitsTodo);
units <- intersect(units, unitsTodo);
verbose && cat(verbose, "Units:");
verbose && str(verbose, units);
unitsTodo <- NULL ## Not needed anymore
verbose && exit(verbose);
}
nbrOfUnits <- length(units);
verbose && printf(verbose, "Number of units to do: %d (%.2f%%)\n",
length(units), 100*length(units)/nbrOfUnits(df));
chipType <- getChipType(dsTCN, fullname=FALSE);
verbose && cat(verbose, "Chip type: ", chipType);
dsList <- NULL ## Not needed anymore
sampleNames <- getNames(dsTCN);
dimnames <- list(NULL, sampleNames, c("total", "fracB"));
outPath <- getPath(this);
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Allocate output data sets
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
res <- getOutputDataSets(this, verbose=less(verbose, 5));
if (nbrOfUnits == 0) {
verbose && cat(verbose, "No more units to process. Skipping.");
verbose && exit(verbose);
return(res);
}
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Process in chunks
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
verbose && enter(verbose, "Calculating number of units to fit per chunk");
verbose && cat(verbose, "RAM scale factor: ", ram);
bytesPerChunk <- 100e6; # 100Mb
verbose && cat(verbose, "Bytes per chunk: ", bytesPerChunk);
bytesPerUnitAndArray <- 2*8; # Just a rough number; good enough?
verbose && cat(verbose, "Bytes per unit and array: ", bytesPerUnitAndArray);
bytesPerUnit <- nbrOfFiles * bytesPerUnitAndArray;
verbose && cat(verbose, "Bytes per unit: ", bytesPerUnit);
unitsPerChunk <- ram * bytesPerChunk / bytesPerUnit;
unitsPerChunk <- as.integer(max(unitsPerChunk, 1));
unitsPerChunk <- min(unitsPerChunk, nbrOfUnits);
verbose && cat(verbose, "Number of units per chunk: ", unitsPerChunk);
nbrOfChunks <- ceiling(nbrOfUnits / unitsPerChunk);
verbose && cat(verbose, "Number of chunks: ", nbrOfChunks);
verbose && exit(verbose);
idxs <- 1:nbrOfUnits;
head <- 1:unitsPerChunk;
count <- 1L;
while (length(idxs) > 0) {
tTotal <- processTime();
verbose && enter(verbose, sprintf("Chunk #%d of %d", count, nbrOfChunks));
if (length(idxs) < unitsPerChunk) {
head <- 1:length(idxs);
}
uu <- idxs[head];
verbose && cat(verbose, "Units: ");
verbose && str(verbose, units[uu]);
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Reading (total,fracB) data
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
verbose && enter(verbose, "Reading (total,fracB) data");
total <- extractMatrix(dsTCN, units=units[uu], verbose=less(verbose,25));
verbose && str(verbose, total);
fracB <- extractMatrix(dsBAF, units=units[uu], verbose=less(verbose,25));
verbose && str(verbose, fracB);
verbose && exit(verbose);
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Calibration
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
verbose && enter(verbose, "Combining into an (total,fracB) array");
dim <- c(nrow(total), ncol(total), 2);
data <- c(total, fracB);
total <- fracB <- NULL ## Not needed anymore
data <- array(data, dim=dim, dimnames=dimnames);
data <- aperm(data, perm=c(1,3,2));
verbose && str(verbose, data);
verbose && exit(verbose);
verbose && enter(verbose, "Calibration");
args <- params;
# BACKWARD COMPATIBILITY: Override with user arguments. /HB 2012-02-05
for (key in names(userArgs)) {
args[[key]] <- userArgs[[key]];
}
args <- c(list(data), args);
verbose && cat(verbose, "Arguments passed to calmateByTotalAndFracB():");
verbose && str(verbose, args);
args$verbose <- verbose;
dataN <- do.call(calmateByTotalAndFracB, args=args);
fit <- attr(dataN, "modelFit");
verbose && str(verbose, fit);
verbose && str(verbose, dataN);
verbose && exit(verbose);
data <- NULL ## Not needed anymore
gc <- gc();
verbose && print(verbose, gc);
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Storing model fit
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
verbose && enter(verbose, "Storing model fit");
verbose && exit(verbose);
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Storing calibrated data
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
verbose && enter(verbose, "Storing calibrated data");
for (kk in seq_along(res)) {
ds <- res[[kk]];
verbose && enter(verbose, sprintf("Data set #%d ('%s') of %d",
kk, getName(ds), length(res)));
# Store in lexicograph ordering
fullnames <- getFullNames(ds);
idxsT <- order(fullnames, decreasing=FALSE);
for (ii in idxsT) {
df <- getFile(ds, ii);
verbose && enter(verbose, sprintf("Data file #%d ('%s') of %d",
ii, getName(df), nbrOfFiles(ds)));
signals <- dataN[,kk,ii];
verbose && cat(verbose, "Signals:");
verbose && str(verbose, signals);
df[units[uu],1] <- signals;
signals <- NULL ## Not needed anymore
verbose && exit(verbose);
} # for (ii ...)
verbose && exit(verbose);
} # for (kk ...)
verbose && exit(verbose);
# Next chunk
idxs <- idxs[-head];
count <- count + 1;
# Garbage collection
tGc <- processTime();
gc <- gc();
verbose && print(verbose, gc);
verbose && exit(verbose);
} # while(length(idxs) > 0)
verbose && exit(verbose);
invisible(res);
})
############################################################################
# HISTORY:
# 2013-01-05 [HB]
# o CLEANUP: Dropped getParametersAsString() since CalMaTeCalibration
# now implements ParametersInterface.
# 2012-02-19 [HB]
# o Made findUnitsTodo() for CalMaTeCalibration smarter. Before it would
# detect all non-polymorphic loci as non-fitted.
# o Added argument 'flavor' to CalMaTeCalibration, which now also add
# the "flavor" to the default set of tags.
# 2012-02-06 [HB]
# o Now as.character() also reports any optional parameters.
# o Added getParametersAsString().
# 2012-02-05 [HB]
# o DEPRECATED: Now argument 'references' of process() is obsolete and
# gives an error. Specify it via CalMaTeCalibration() instead.
# o Added getParameters() for CalMaTeCalibration.
# 2011-07-15 [HB]
# o DOCUMENTATION: Added a section 'Reference samples' to the help
# of CalMaTeCalibration.
# o DEPRECATED: Argument 'references' of process() of CalMaTeCalibration
# is deprecated. Instead, pass it to CalMaTeCalibration().
# o CLEANUP: Tidied up the validation of argument 'references' and
# improved the corresponding error messages.
# 2011-07-12 [MO]
# o Check that the number of references has to be at least 3.
# If no references are given, the total number of files has to be
# at least 3. (Used to be 6).
# 2011-03-12
# o BUG FIX: After recent update, allocateOutputDataSets() would only
# work for existing data sets, not to create new ones.
# 2011-03-08
# o GENERALIZATION: Now allocateOutputDataSets() for CalMaTeCalibration
# no longer requires write permissions if the data set already exists.
# o Added argument 'references' to the CalMaTeCalibration constructor.
# 2010-07-31
# o BUG FIX: process() for CalMaTeCalibration would only run one chunk.
# 2010-07-30
# o Renamed CalMaTeNormalization to CalMaTeCalibration.
# 2010-07-22
# o BUG FIX: Now process() for CalMaTeCalibration returns immediately
# if there are no units left.
# o BUG FIX: process(..., verbose=TRUE) would give "Error in sprintf("Chunk
# #%d of %d", count, nbrOfChunks) : invalid format '%d'; use format %f,
# %e, %g or %a for numeric objects".
# 2010-06-29
# o Added support for process(..., force=TRUE) in CalMaTeNormalization.
# 2010-06-23
# o Added support for argument 'references' and 'truncate'.
# TODO: The asterisk tags should probably reflect these settings.
# o Code cleanup.
# 2010-06-21
# o Added minor Rdoc comments.
# o ROBUSTNESS: Added more assertions to the CalMaTe constructor.
# o ROBUSTNESS: Now process() stores results in lexicograph ordering to
# assure that the lexicographicly last file is updated last, which is
# the file that findUnitsTodo() is querying.
# o Added getOutputDataSets().
# o Added findUnitsTodo().
# o Now allocateOutputDataSets() "clears" the files.
# 2010-06-20
# o First test shows that it seems to work.
# o Created.
############################################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.