Nothing
#' Plot Individual Realisations of Posterior Rate of Sample Occurrence for Poisson Process Model
#'
#' @description
#' Given output from the Poisson process fitting function [carbondate::PPcalibrate] plot
#' individual realisations from the MCMC for the rate of sample occurrence (i.e., realisations
#' of the underlying Poisson process rate \eqn{\lambda(t)}), on a given calendar age grid
#' (provided in cal yr BP). Specify either `n_realisations` if you want to select a random set
#' of realisations, or `realisations` if you want to provide a vector of specific realisations.
#'
#' @inheritParams PlotPosteriorMeanRate
#' @param n_realisations Number of randomly sampled realisations to be drawn from MCMC posterior
#' and plotted. Default is 10.
#' @param plot_realisations_colour The colours to be used to plot the individual realisations.
#' Default is greyscale (otherwise should have same length as number of realisations).
#' @param realisations Specific indices of realisations (in thinned version) to plot if user does not
#' want to sample realisations randomly). If specified will override `n_realisations`.
#' @param interval_width The confidence intervals to show for the
#' calibration curve. Choose from one of `"1sigma"` (68.3%),
#' `"2sigma"` (95.4%) and `"bespoke"`. Default is `"2sigma"`.
#' @param bespoke_probability The probability to use for the confidence interval
#' if `"bespoke"` is chosen above. E.g., if 0.95 is chosen, then the 95% confidence
#' interval is calculated. Ignored if `"bespoke"` is not chosen.
#'
#' @return None
#'
#' @export
#'
#' @examples
#' #' # NOTE: All these examples are shown with a small n_iter and n_posterior_samples
#' # to speed up execution.
#' # Try n_iter and n_posterior_samples as the function defaults.
#'
#' pp_output <- PPcalibrate(
#' pp_uniform_phase$c14_age,
#' pp_uniform_phase$c14_sig,
#' intcal20,
#' n_iter = 1000,
#' show_progress = FALSE)
#'
#' # Plot 10 random realisations in greyscale
#' PlotRateIndividualRealisation(
#' pp_output,
#' n_realisations = 10)
#'
#' # Plot three random realisations with specific colours
#' PlotRateIndividualRealisation(
#' pp_output,
#' n_realisations = 3,
#' plot_realisations_colour = c("red", "green", "purple"))
#'
#' # Plot some specific realisations
#' PlotRateIndividualRealisation(
#' pp_output,
#' realisations = c(60, 73, 92),
#' plot_realisations_colour = c("red", "green", "purple"))
PlotRateIndividualRealisation <- function(
output_data,
n_realisations = 10,
plot_realisations_colour = NULL,
realisations = NULL,
calibration_curve = NULL,
plot_14C_age = TRUE,
plot_cal_age_scale = "BP",
interval_width = "2sigma",
bespoke_probability = NA,
denscale = 3,
resolution = 1,
n_burn = NA,
n_end = NA,
plot_pretty = TRUE,
plot_lwd = 2) {
n_iter <- output_data$input_parameters$n_iter
n_thin <- output_data$input_parameters$n_thin
n_real <- length(output_data$rate_s)
arg_check <- .InitializeErrorList()
.CheckOutputData(arg_check, output_data, "RJPP")
.CheckInteger(arg_check, n_realisations)
.CheckRealisations(arg_check, realisations, lower = 1, upper = n_real)
.CheckCalibrationCurveFromOutput(arg_check, output_data, calibration_curve)
.CheckFlag(arg_check, plot_14C_age)
.CheckChoice(arg_check, plot_cal_age_scale, c("BP", "AD", "BC"))
.CheckIntervalWidth(arg_check, interval_width, bespoke_probability)
.CheckNumber(arg_check, denscale, lower = 0)
.CheckNumber(arg_check, resolution, lower = 0.01)
.ReportErrors(arg_check)
n_burn <- .SetNBurn(n_burn, n_iter, n_thin)
n_end <- .SetNEnd(n_end, n_iter, n_thin)
# Ensure revert to main environment par on exit of function
oldpar <- graphics::par(no.readonly = TRUE)
on.exit(graphics::par(oldpar))
# Set nice plotting parameters
if(plot_pretty) {
graphics::par(
mgp = c(3, 0.7, 0),
xaxs = "i",
yaxs = "i",
mar = c(5, 4.5, 4, 2) + 0.1,
las = 1)
}
if (is.null(calibration_curve)) {
calibration_curve <- get(output_data$input_data$calibration_curve_name)
}
rc_determinations <- output_data$input_data$rc_determinations
rc_sigmas <- output_data$input_data$rc_sigmas
F14C_inputs <-output_data$input_data$F14C_inputs
if (plot_14C_age == TRUE) {
calibration_curve <- .AddC14ageColumns(calibration_curve)
if (F14C_inputs == TRUE) {
converted <- .ConvertF14cTo14Cage(rc_determinations, rc_sigmas)
rc_determinations <- converted$c14_age
}
} else {
calibration_curve <- .AddF14cColumns(calibration_curve)
if (F14C_inputs == FALSE) {
converted <- .Convert14CageToF14c(rc_determinations, rc_sigmas)
rc_determinations <- converted$f14c
}
}
##############################################################################
# Initialise plotting parameters
calibration_curve_colour <- "blue"
calibration_curve_bg <- grDevices::rgb(0, 0, 1, .3)
output_colour <- "purple"
start_age <- ceiling(min(output_data$rate_s[[1]]) / resolution) * resolution
end_age <- floor(max(output_data$rate_s[[1]]) / resolution) * resolution
if (end_age == max(output_data$rate_s[[1]])) {
# Removes issue of sequence coinciding with end changepoint
end_age <- end_age - resolution
}
calendar_age_sequence <- seq(from = start_age, to = end_age, by = resolution)
xlim <- rev(range(calendar_age_sequence))
##############################################################################
# Sample realisations if not specific
if(is.null(realisations)) {
realisations <- sample((n_burn + 1):n_end,
n_realisations,
replace = ((n_end - n_burn) < n_realisations))
}
n_realisations <- length(realisations)
if(!is.null(plot_realisations_colour) && (length(plot_realisations_colour) != n_realisations)) {
warning("Plot_realisations_colour is not the same length as the number of realisations that you have selected, overriding colour choice to be greyscale",
call. = FALSE)
}
if(is.null(plot_realisations_colour) || length(plot_realisations_colour) != n_realisations) {
plot_realisations_colour <- rep(grDevices::grey(0.4, alpha = 0.6), n_realisations)
}
# Calculate rate for each realisation
rate <- matrix(NA, nrow = n_realisations, ncol = length(calendar_age_sequence))
for (i in 1:n_realisations) {
ind <- realisations[i]
rate[i,] <- stats::approx(
x = output_data$rate_s[[ind]],
y = c(output_data$rate_h[[ind]], 0),
xout = calendar_age_sequence,
method = "constant")$y
}
ylim_rate <- c(0, denscale * max(rate))
##############################################################################
# Plot curves
plot_title <- expression(paste("Posterior realisations of rate ", lambda, "(t)"))
.PlotCalibrationCurveAndInputData(
plot_cal_age_scale,
xlim,
calibration_curve,
rc_determinations,
plot_14C_age,
calibration_curve_colour,
calibration_curve_bg,
interval_width,
bespoke_probability,
title = plot_title)
.SetUpDensityPlot(plot_cal_age_scale, xlim, ylim_rate)
# Plot realisations
cal_age <- .ConvertCalendarAge(plot_cal_age_scale, calendar_age_sequence)
for(i in 1:n_realisations) {
graphics::lines(cal_age, rate[i,], col = plot_realisations_colour[i], lwd = plot_lwd)
}
.AddRealisationLegendToRatePlot(
output_data,
interval_width,
bespoke_probability,
calibration_curve_colour,
output_colour = plot_realisations_colour[1])
}
.AddRealisationLegendToRatePlot <- function(
output_data,
interval_width,
bespoke_probability,
calibration_curve_colour,
output_colour) {
ci_label <- switch(
interval_width,
"1sigma" = expression(paste("1", sigma, " interval")),
"2sigma" = expression(paste("2", sigma, " interval")),
"bespoke" = paste0(round(100 * bespoke_probability), "% interval"))
legend_labels <- c(
gsub("intcal", "IntCal",
gsub("shcal", "SHCal",
output_data$input_data$calibration_curve_name)), # Both IntCal and SHCal
ci_label,
"Realisations")
lty <- c(1, 2, 1)
pch <- c(NA, NA, NA)
col <- c(calibration_curve_colour, calibration_curve_colour, output_colour)
graphics::legend(
"topright", legend = legend_labels, lty = lty, pch = pch, col = col)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.