Nothing
#' Generate Grid Data with Noise
#'
#' This function generates a grid dataset with specified grid points along the x
#' and y axes, and optionally adds noise dimensions.
#'
#' @param nx The number of grid points along the x axis.
#' @param ny The number of grid points along the y axis.
#' @param num_noise The number of additional noise dimensions to add to the data.
#' @param min_n The minimum value for the noise dimensions.
#' @param max_n The maximum value for the noise dimensions.
#' @return A matrix containing the grid data with added noise.
#' @export
#'
#' @examples
#' set.seed(20240412)
#' one_grid <- one_grid(nx = 10, ny = 10, num_noise = 2, min_n = -0.05, max_n = 0.05)
one_grid <- function(nx, ny, num_noise, min_n, max_n) {
if (nx <= 0) {
stop("The number of grid points along the x axis should be a positive number.")
}
if (ny <= 0) {
stop("The number of grid points along the y axis should be a positive number.")
}
if (num_noise < 0) {
stop("Number of noise dimensions should be a positive number.")
}
if (missing(nx)) {
stop("Missing nx.")
}
if (missing(ny)) {
stop("Missing nx.")
}
if (missing(num_noise)) {
stop("Missing num_noise.")
}
df <- expand.grid(1:nx, 1:ny)
df_mat <- matrix(c(df$Var1, df$Var2), ncol = 2)
if (num_noise != 0) {
if (missing(min_n)) {
stop("Missing min_n.")
}
if (missing(max_n)) {
stop("Missing max_n.")
}
noise_mat <- gen_noise_dims(
n = dim(df_mat)[1], num_noise = num_noise,
min_n = min_n, max_n = max_n
)
df_mat <- cbind(df_mat, noise_mat)
df_mat
} else {
df_mat
}
}
#' Generate Two Grids with Noise
#'
#' This function generates two grid datasets with noise dimensions.
#'
#' @param n_value The number of grid points along the x and y axes for each grid.
#' @param num_noise The number of additional noise dimensions to add to the data.
#' @param min_n The minimum value for the noise dimensions.
#' @param max_n The maximum value for the noise dimensions.
#' @return A list containing two grid datasets with added noise and the sample
#' size of each dataset.
#' @export
#'
#' @examples
#' set.seed(20240412)
#' two_grids <- two_grid(n_value = 19, num_noise = 2, min_n = -0.05, max_n = 0.05)
two_grid <- function(n_value, num_noise, min_n, max_n) {
if (n_value <= 0) {
stop("The number of grid points along the x and y axes should be a positive number.")
}
if (num_noise < 0) {
stop("Number of noise dimensions should be a positive number.")
}
if (missing(n_value)) {
stop("Missing n_value.")
}
if (missing(num_noise)) {
stop("Missing num_noise.")
}
df1 <- one_grid(nx = n_value, ny = n_value, num_noise = 0)
df1 <- cbind(df1, stats::runif(NROW(df1), -0.01, 0.01), stats::runif(NROW(df1), -0.01, 0.01))
df2 <- one_grid(nx = n_value, ny = n_value, num_noise = 0)
df2 <- cbind(df2, stats::runif(NROW(df2), -0.01, 0.01), stats::runif(NROW(df2), -0.01, 0.01))
df2 <- df2[, c(1, 3, 2, 4)]
df <- rbind(df1, df2)
if (num_noise != 0) {
if (missing(min_n)) {
stop("Missing min_n.")
}
if (missing(max_n)) {
stop("Missing max_n.")
}
noise_mat <- gen_noise_dims(
n = dim(df)[1], num_noise = num_noise,
min_n = min_n, max_n = max_n
)
df <- cbind(df, noise_mat)
}
return(list(df = df, n = NROW(df)))
}
#' Generate Three Grids with Noise
#'
#' This function generates three grid datasets with noise dimensions.
#'
#' @param n_value The number of grid points along the x and y axes for each grid.
#' @param num_noise The number of additional noise dimensions to add to the data.
#' @param min_n The minimum value for the noise dimensions.
#' @param max_n The maximum value for the noise dimensions.
#' @return A list containing three grid datasets with added noise and the sample
#' size of each dataset.
#' @export
#'
#' @examples
#' set.seed(20240412)
#' three_grids <- three_grid(
#' n_value = 19, num_noise = 2, min_n = -0.05,
#' max_n = 0.05
#' )
three_grid <- function(n_value, num_noise, min_n, max_n) {
if (n_value <= 0) {
stop("The number of grid points along the x and y axes should be a positive number.")
}
if (num_noise < 0) {
stop("Number of noise dimensions should be a positive number.")
}
if (missing(n_value)) {
stop("Missing n_value.")
}
if (missing(num_noise)) {
stop("Missing num_noise.")
}
df1 <- one_grid(nx = n_value, ny = n_value, num_noise = 0)
df1 <- cbind(df1, stats::runif(NROW(df1), -0.01, 0.01), stats::runif(NROW(df1), -0.01, 0.01))
df2 <- one_grid(nx = n_value, ny = n_value, num_noise = 0)
df2 <- cbind(df2, stats::runif(NROW(df2), -0.01, 0.01), stats::runif(NROW(df2), -0.01, 0.01))
df2 <- df2[, c(1, 3, 2, 4)]
df3 <- one_grid(nx = n_value, ny = n_value, num_noise = 0)
df3 <- cbind(df3, stats::runif(NROW(df3), -0.01, 0.01), stats::runif(NROW(df3), -0.01, 0.01))
df3 <- df3[, c(1, 3, 4, 2)]
df <- rbind(df1, df2, df3)
if (num_noise != 0) {
if (missing(min_n)) {
stop("Missing min_n.")
}
if (missing(max_n)) {
stop("Missing max_n.")
}
noise_mat <- gen_noise_dims(
n = dim(df)[1], num_noise = num_noise,
min_n = min_n, max_n = max_n
)
df <- cbind(df, noise_mat)
}
return(list(df = df, n = NROW(df)))
}
#' Generate One Grid with Different Values and Background Noise
#'
#' This function generates a grid dataset with different values and background noise.
#'
#' @param n_value The number of grid points along each axis for the grids.
#' @param num_noise The number of additional noise dimensions to add to the data.
#' @param min_n The minimum value for the noise dimensions.
#' @param max_n The maximum value for the noise dimensions.
#' @return A list containing the one grid datasets with background noise and the sample size.
#' @export
#'
#' @examples
#' set.seed(20240412)
#' one_grid_bkg <- one_grid_bkg(
#' n_value = 10, num_noise = 2, min_n = -0.05,
#' max_n = 0.05
#' )
one_grid_bkg <- function(n_value, num_noise, min_n, max_n) {
if (n_value <= 0) {
stop("The number of grid points along the x and y axes should be a positive number.")
}
if (num_noise < 0) {
stop("Number of noise dimensions should be a positive number.")
}
if (missing(n_value)) {
stop("Missing n_value.")
}
if (missing(num_noise)) {
stop("Missing num_noise.")
}
df1 <- one_grid(nx = n_value, ny = n_value, num_noise = 0)
if (num_noise != 0) {
if (missing(min_n)) {
stop("Missing min_n.")
}
if (missing(max_n)) {
stop("Missing max_n.")
}
noise_mat <- gen_noise_dims(
n = dim(df1)[1], num_noise = num_noise,
min_n = min_n, max_n = max_n
)
df1 <- cbind(df1, noise_mat)
}
df2 <- gen_bkg_noise(n = NROW(df1) * 0.5, num_dims = NCOL(df1), mean = 2, sd = 3)
df <- rbind(df1, df2)
return(list(df = df, n = NROW(df)))
}
#' Generate Two Grids with Background Noise
#'
#' This function generates two grid datasets with background noise.
#'
#' @param n_value The number of grid points along each axis for the grids.
#' @param num_noise The number of additional noise dimensions to add to the data.
#' @param min_n The minimum value for the noise dimensions.
#' @param max_n The maximum value for the noise dimensions.
#' @return A list containing the two grid datasets with background noise and the sample size.
#' @export
#'
#' @examples
#' set.seed(20240412)
#' two_grid_comb_bkg <- two_grid_comb_bkg(
#' n_value = 10, num_noise = 2,
#' min_n = -0.05, max_n = 0.05
#' )
two_grid_comb_bkg <- function(n_value, num_noise, min_n, max_n) {
if (n_value <= 0) {
stop("The number of grid points along the x and y axes should be a positive number.")
}
if (num_noise < 0) {
stop("Number of noise dimensions should be a positive number.")
}
if (missing(n_value)) {
stop("Missing n_value.")
}
if (missing(num_noise)) {
stop("Missing num_noise.")
}
df1 <- one_grid(nx = n_value, ny = n_value, num_noise = 0)
df3 <- df1 + 5
df1 <- rbind(df1, df3)
n <- NROW(df1) + NROW(df1) * 0.6 / 2
if (num_noise != 0) {
if (missing(min_n)) {
stop("Missing min_n.")
}
if (missing(max_n)) {
stop("Missing max_n.")
}
noise_mat <- gen_noise_dims(
n = dim(df1)[1], num_noise = num_noise,
min_n = min_n, max_n = max_n
)
df1 <- cbind(df1, noise_mat)
}
df2 <- gen_bkg_noise(n = n * 0.6 / 2.6, num_dims = NCOL(df1), mean = 3, sd = 5)
df <- rbind(df1, df2)
return(list(df = df, n = NROW(df)))
}
#' Generate One Grid with Different Offset
#'
#' This function generates a single grid dataset with a different offset.
#'
#' @param n_value The number of grid points along each axis for the grids.
#' @param num_noise The number of additional noise dimensions to add to the data.
#' @param min_n The minimum value for the noise dimensions.
#' @param max_n The maximum value for the noise dimensions.
#' @return A list containing the grid dataset with different offsets and the sample size.
#' @export
#'
#' @examples
#' set.seed(20240412)
#' two_grid_comb <- two_grid_comb(
#' n_value = 10, num_noise = 2, min_n = -0.05,
#' max_n = 0.05
#' )
two_grid_comb <- function(n_value, num_noise, min_n, max_n) {
if (n_value <= 0) {
stop("The number of grid points along the x and y axes should be a positive number.")
}
if (num_noise < 0) {
stop("Number of noise dimensions should be a positive number.")
}
if (missing(n_value)) {
stop("Missing n_value.")
}
if (missing(num_noise)) {
stop("Missing num_noise.")
}
df1 <- one_grid(nx = n_value, ny = n_value, num_noise = 0)
df2 <- df1 + 3
df <- rbind(df1, df2)
if (num_noise != 0) {
if (missing(min_n)) {
stop("Missing min_n.")
}
if (missing(max_n)) {
stop("Missing max_n.")
}
noise_mat <- gen_noise_dims(
n = dim(df)[1], num_noise = num_noise,
min_n = min_n, max_n = max_n
)
df <- cbind(df, noise_mat)
}
return(list(df = df, n = NROW(df)))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.