R/mmi.R

Defines functions mmi

Documented in mmi

#' Multiple-Mediator-Imputation Estimation Method
#'
#' 'mmi' is used to estimate the initial disparity, disparity reduction, and
#' disparity remaining for causal decomposition analysis, using the
#' multiple-mediator-imputation estimation method proposed by Park et al. (2020).
#' This estimator was originally developed to handle multiple mediators simultaneously;
#' however, it can also be applied to a single mediator.
#' 
#' @usage 
#' mmi(fit.r = NULL, fit.x, fit.y, group, covariates, sims = 100, conf.level = .95,
#'     conditional = TRUE, cluster = NULL, long = TRUE, mc.cores = 1L, seed = NULL)
#'
#' @details This function returns the point estimates of the initial disparity,
#'   disparity reduction, and disparity remaining for a categorical
#'   social group indicator and a variety of types of outcome and
#'   mediator(s) in causal decomposition analysis. It also returns nonparametric
#'   percentile bootstrap confidence intervals for each estimate.
#'   
#'   The initial disparity between two groups is defined as \eqn{\tau(r,0) \equiv E[Y|R=r,c]-E[Y|R=0,c]},
#'   for \eqn{c \in \mathcal{C}} and \eqn{r \mathcal{R}}, where \eqn{R=0} denotes the reference group and
#'   \eqn{R=r} is the comparison group. 
#'   
#'   The disparity reduction, conditional on baseline covariates, measures how much the initial disparity
#'   would shrink if we simultaneously equalized the distribution of the mediators W and M across groups
#'   within each level of \eqn{C}. Formally, \eqn{\delta(1)\equiv E[Y|R=1,c]-E[Y(G_{w|c}(0)G_{m|c}(0))|R=1,c]},
#'   where \eqn{G_{m|c}(0)} and \eqn{G_{w|c}(0)} are a random draw from the reference group’s mediator \eqn{M}
#'   and \eqn{W} distribution given \eqn{C}, respectively. 
#'   
#'   The remaining disparity, also conditional on \eqn{C}, is the difference between the reference group’s
#'   observed outcome and the counterfactual outcome for the comparison group after equalizing \eqn{M}.
#'   Formally, \eqn{\zeta(0) \equiv E[Y(Y(G_{w|c}(0)G_{m|c}(0)))|R=1, c]-E[Y|R=0, c]}.
#'   
#'   The disparity reduction and remaining can be estimated using the
#'   multiple-mediator-imputation method suggested by Park et al. (2020).
#'   See the references for more details.
#'
#'   If one wants to make the inference conditional on baseline covariates,
#'   set 'conditional = TRUE' and center the data before fitting the models.
#'
#'   As of version 0.1.0, the intetmediate confounder model ('fit.x') can be of
#'   class 'lm', 'glm', 'multinom', or 'polr', corresponding respectively to the
#'   linear regression models and generalized linear models, multinomial
#'   log-linear models, and ordered response models.
#'   The outcome model ('fit.y') can be of class 'lm' or 'glm'.
#'   Also, the social group model ('fit.r') can be of class 'CBPS' or 'SumStat', both of
#'   which use the propensity score weighting. It is only necessary when 'conditional = FALSE'.
#'
#' @param fit.r a fitted model object for social group indicator (treatment). Can be of class 'CBPS' or
#'   'SumStat'. Default is 'NULL'. Only necessary if 'conditional' is 'FALSE'.
#' @param fit.x a fitted model object for intermediate confounder(s). Each intermediate
#'   model can be of class 'lm', 'glm', 'multinom', or 'polr'. When multiple confounders
#'   are considered, can be of class 'list' containing multiple models.
#' @param fit.y a fitted model object for outcome. Can be of class 'lm' or 'glm'.
#' @param sims number of Monte Carlo draws for nonparametric bootstrap.
#' @param conf.level level of the returned two-sided confidence intervals,
#'   which are estimated by the nonparametric percentile bootstrap method.
#'   Default is .95, which returns the 2.5 and 97.5 percentiles of the simulated
#'   quantities.
#' @param group a character string indicating the name of the social group indicator
#'   such as race or gender (treatment) used in the models. The social group indicator
#'   can be categorical with two or more categories (two- or multi-valued factor).
#' @param covariates a vector containing the name of the covariate variable(s)
#'   used in the models. Each covariate can be categorical with two or more
#'   categories (two- or multi-valued factor) or continuous (numeric).
#' @param conditional a logical value. If 'TRUE', the function will return the
#'   estimates conditional on those covariate values, and all covariates in
#'   mediator and outcome models need to be centered prior to fitting.
#'   Default is 'TRUE'. If 'FALSE', 'fit.r' needs to be specified.
#' @param cluster a vector of cluster indicators for the bootstrap. If provided,
#'   the cluster bootstrap is used. Default is 'NULL'.
#' @param long a logical value. If 'TRUE', the output will contain the entire
#'   sets of estimates for all bootstrap samples. Default is 'TRUE'.
#' @param mc.cores The number of cores to use. Must be exactly 1 on Windows.
#' @param seed seed number for the reproducibility of results. Default is `NULL'.
#'
#' @return
#'
#'   \item{result}{a matrix containing the point estimates of the initial disparity,
#'   disparity remaining, and disparity reduction, and the percentile bootstrap
#'   confidence intervals for each estimate.}
#'   \item{all.result}{a matrix containing the point estimates of the initial disparity,
#'   disparity remaining, and disparity reduction for all bootstrap samples. Returned
#'   if 'long' is 'TRUE'.}
#'
#' @author
#'   Suyeon Kang, University of Central Florida, \email{suyeon.kang@@ucf.edu};
#'   Soojin Park, University of California, Riverside, \email{soojinp@@ucr.edu}.
#'
#' @seealso \code{\link{smi}}
#'
#' @references
#' 
#'   Park, S., Qin, X., & Lee, C. (2022). "Estimation and sensitivity analysis for causal
#'   decomposition in health disparity research". Sociological Methods & Research, 53(2),
#'   571-602.
#'   
#'   Park, S., Kang, S., & Lee, C. (2023). "Choosing an Optimal Method for Causal Decomposition
#'   Analysis with Continuous Outcomes: A Review and Simulation Study". Sociological Methodology,
#'   54(1), 92-117.
#'
#' @export
#' @examples
#' data(sdata)
#'
#' #------------------------------------------------------------------------------#
#' # Example 1-a: Continuous Outcome
#' #------------------------------------------------------------------------------#
#' fit.m1 <- lm(M.num ~ R + C.num + C.bin, data = sdata)
#' fit.m2 <- glm(M.bin ~ R + C.num + C.bin, data = sdata,
#'           family = binomial(link = "logit"))
#' require(MASS)
#' fit.m3 <- polr(M.cat ~ R + C.num + C.bin, data = sdata)
#' fit.x1 <- lm(X ~ R + C.num + C.bin, data = sdata)
#' require(nnet)
#' fit.m4 <- multinom(M.cat ~ R + C.num + C.bin, data = sdata)
#' fit.y1 <- lm(Y.num ~ R + M.num + M.bin + M.cat + X + C.num + C.bin,
#'           data = sdata)
#'
#' require(PSweight)
#' fit.r1 <- SumStat(R ~ C.num + C.bin, data = sdata, weight = "IPW")
#' \donttest{require(CBPS)
#' fit.r2 <- CBPS(R ~ C.num + C.bin, data = sdata, method = "exact",
#'           standardize = "TRUE")}
#'
#' res.1a <- mmi(fit.r = fit.r1, fit.x = fit.x1,
#'           fit.y = fit.y1, sims = 40, conditional = FALSE,
#'           covariates = c("C.num", "C.bin"), group = "R", seed = 111)
#' res.1a
#'
#' #------------------------------------------------------------------------------#
#' # Example 1-b: Binary Outcome
#' #------------------------------------------------------------------------------#
#' \donttest{fit.y2 <- glm(Y.bin ~ R + M.num + M.bin + M.cat + X + C.num + C.bin,
#'           data = sdata, family = binomial(link = "logit"))
#'
#' res.1b <- mmi(fit.r = fit.r1, fit.x = fit.x1,
#'           fit.y = fit.y2, sims = 40, conditional = FALSE,
#'           covariates = c("C.num", "C.bin"), group = "R", seed = 111)
#' res.1b}
#' 
#' #------------------------------------------------------------------------------#
#' # Example 2-a: Continuous Outcome, Conditional on Covariates
#' #------------------------------------------------------------------------------#
#' \donttest{# For conditional = TRUE, need to create data with centered covariates
#' # copy data
#' sdata.c <- sdata
#' # center quantitative covariate(s)
#' sdata.c$C.num <- scale(sdata.c$C.num, center = TRUE, scale = FALSE)
#' # center binary (or categorical) covariates(s)
#' # only neccessary if the desired baseline level is NOT the default baseline level.
#' sdata.c$C.bin <- relevel(sdata.c$C.bin, ref = "1")
#'
#' # fit mediator and outcome models
#' fit.m1 <- lm(M.num ~ R + C.num + C.bin, data = sdata.c)
#' fit.m2 <- glm(M.bin ~ R + C.num + C.bin, data = sdata.c,
#'           family = binomial(link = "logit"))
#' fit.m3 <- polr(M.cat ~ R + C.num + C.bin, data = sdata.c)
#' fit.x2 <- lm(X ~ R + C.num + C.bin, data = sdata.c)
#' fit.y1 <- lm(Y.num ~ R + M.num + M.bin + M.cat + X + C.num + C.bin,
#'           data = sdata.c)
#'
#' res.2a <- mmi(fit.x = fit.x2,
#'           fit.y = fit.y1, sims = 40, conditional = TRUE,
#'           covariates = c("C.num", "C.bin"), group = "R", seed = 111)
#' res.2a}
#' 
#' #------------------------------------------------------------------------------#
#' # Example 2-b: Binary Outcome, Conditional on Covariates
#' #------------------------------------------------------------------------------#
#' \donttest{fit.y2 <- glm(Y.bin ~ R + M.num + M.bin + M.cat + X + C.num + C.bin,
#'           data = sdata.c, family = binomial(link = "logit"))
#'
#' res.2b <- mmi(fit.x = fit.x2,
#'           fit.y = fit.y2, sims = 40, conditional = TRUE,
#'           covariates = c("C.num", "C.bin"), group = "R", seed = 111)
#' res.2b}
#' 
#' #------------------------------------------------------------------------------#
#' # Example 3: Case with Multiple Intermediate Confounders
#' #------------------------------------------------------------------------------#
#' \donttest{fit.r <- SumStat(R ~ C, data = idata, weight = "IPW")
#' fit.x1 <- lm(X1 ~ R + C, data = idata)
#' fit.x2 <- lm(X2 ~ R + C, data = idata)
#' fit.x3 <- lm(X3 ~ R + C, data = idata)
#' fit.y <- lm(Y ~ R + M + X1 + X2 + X3 + C, data = idata)
#' 
#' res.3 <- mmi(fit.r = fit.r, fit.x = list(fit.x1, fit.x2, fit.x3),
#'          fit.y = fit.y, sims = 40, conditional = FALSE,
#'          covariates = "C", group = "R", seed = 111)
#'          res.3}
mmi <- function(fit.r = NULL, fit.x, fit.y,
                group, covariates, sims = 100, conf.level = .95,
                conditional = TRUE, cluster = NULL, long = TRUE,
                mc.cores = 1L, seed = NULL){

  if(!is.null(seed)){
    set.seed(seed)
  }
  
  fit.m <- fit.x

  # Warning for inappropriate settings
  if(!is.null(fit.r) && conditional){
    stop("social group (treatment) model must be NULL when conditional = TRUE")
  }

  if(is.null(fit.r) && !conditional){
    stop("social group (treatment) model must be specified when conditional = FALSE")
  }

  if(length(group) >= 2){
    stop("only one variable must be selected for 'group'")
  }

  if(conf.level <= 0 | conf.level >= 1){
    stop("'conf.level' must be between 0 and 1")
  }

  if(.Platform$OS.typ == "windows" && as.integer(mc.cores) > 1L){
    warning("'mc.cores' > 1 is not supported on Windows. mc.cores = 1 forced")
    mc.cores <- 1L
  } else if (as.integer(mc.cores) > detectCores()){
    warning(paste("The maximum number of cores is ", detectCores(),
                  ". mc.cores = ", detectCores(), " forced", sep = ""))
    mc.cores <- detectCores()
  } else if (as.integer(mc.cores) < 1L){
    stop("'mc.cores' must be >= 1")
  }

  # Possibility of multiple intermediate confounders
  if(inherits(fit.m, "list")){
    isMultiConfounders <- TRUE
    num.ms <- length(fit.m)
  } else {
    isMultiConfounders <- FALSE
    num.ms <- 1
  }

  # Model type indicators
  isCBPS.r <- inherits(fit.r, "CBPS")
  isSumStat.r <- inherits(fit.r, "SumStat")

  isGlm.y <- inherits(fit.y, "glm")
  isLm.y <- inherits(fit.y, "lm")

  isGlm.m <- isLm.m <- isNominal.m <- isOrdinal.m <- FamilyM <- rep(NA, num.ms)
  for (mm in 1:num.ms) {
    if(isMultiConfounders){
      fit.mm <- fit.m[[mm]]
    } else if (!isMultiConfounders){
      fit.mm <- fit.m
    }

    isGlm.m[mm] <- inherits(fit.mm, "glm")
    isLm.m[mm] <- inherits(fit.mm, "lm")
    isNominal.m[mm] <- inherits(fit.mm, "multinom")
    isOrdinal.m[mm] <- inherits(fit.mm, "polr")

    if(!isGlm.m[mm] && !isLm.m[mm] && !isNominal.m[mm] && !isOrdinal.m[mm]){
      stop("unsupported mediator model(s)")
    }

    if (isGlm.m[mm]) {
      FamilyM[mm] <- fit.mm$family$family
    }
  }

  if(!is.null(fit.r) && !isCBPS.r && !isSumStat.r){
    stop("unsupported social group (treatment) model")
  }

  if(!isGlm.y && !isLm.y){
    stop("unsupported outcome model")
  }

  # Numbers of observations and model frame
  if(!is.null(fit.r) && isCBPS.r){
    n.r <- nrow(model.frame(fit.r))
  } else if (!is.null(fit.r) && isSumStat.r){
    n.r <- nrow(fit.r$propensity)
  } else {
    n.r <- NULL
  }
  n.m <- rep(NA, num.ms)
  for(mm in 1:num.ms){
    if(isMultiConfounders){
      fit.mm <- fit.m[[mm]]
    } else if (!isMultiConfounders){
      fit.mm <- fit.m
    }
    n.m[mm] <- nrow(model.frame(fit.mm))
  }
  if(length(unique(n.m)) > 1){
    stop("number of observations do not match between mediator models")
  } else {
    n.m <- n.m[1]
  }
  y.data <- model.frame(fit.y)
  n.y <- nrow(y.data)
  if(is.null(n.r)){
    if(n.m != n.y){
      stop("number of observations do not match between mediator
           and outcome models")
    }
  } else if (!is.null(n.r)){
    if(n.m != n.y | n.r != n.y | n.m != n.r){
      stop("number of observations do not match between social group (treatment),
           mediator and outcome models")
    }
  }
  
  # Model frames for M and Y models (ver 0.1.0)
  if(isMultiConfounders){
    m.data <- model.frame(fit.m[[1]])
  } else {
    m.data <- model.frame(fit.m)
  }
  y.data <- model.frame(fit.y)
  
  if(!is.null(cluster)){
    row.names(m.data) <- 1:nrow(m.data)
    row.names(y.data) <- 1:nrow(y.data)
    
    if(!is.null(fit.m$weights)){
      m.weights <- as.data.frame(fit.m$weights)
      m.name <- as.character(fit.m$call$weights)  
      names(m.weights) <- m.name
      m.data <- cbind(m.data, m.weights)
    }
    
    if(!is.null(fit.y$weights)){
      y.weights <- as.data.frame(fit.y$weights)
      y.name <- as.character(fit.y$call$weights)  
      names(y.weights) <- y.name
      y.data <- cbind(y.data, y.weights)
    }
  }
  
  # Extracting weights from models (ver 0.1.0)
  weights.m <- model.weights(m.data)
  weights.y <- model.weights(y.data)
  
  if(!is.null(weights.m) && isGlm.m && FamilyM == "binomial"){
    message("weights taken as sampling weights, not total number of trials")
  }
  if(is.null(weights.m)){
    weights.m <- rep(1, nrow(m.data))
  }
  if(is.null(weights.y)){
    weights.y <- rep(1, nrow(y.data))
  }
  weights <- weights.y

  # Extract social group (treatment) and outcome variable names from models
  if(!is.null(fit.r)){
    if(isCBPS.r){
      group0 <- all.vars(formula(fit.r))[[1]]
    } else if(isSumStat.r){
      group0 <- names(fit.r$ps.weight)[[1]]
    }
    if(group != group0){
      stop("response variable of 'fit.r' and specified 'group' do not match")
    } else {
      group <- group0
    }
  }
  r <- length(levels(y.data[, group]))
  outcome <- all.vars(formula(fit.y))[[1]]

  # Bootstrap QoI
  message("Running nonparametric bootstrap\n")

  # Make objects available to all functions
  environment(combine.b) <- environment(combine) <- environment(select_group) <- environment()

  out <- matrix(NA, 3 * (r - 1), 3)
  all.out <- matrix(NA, 3 * (r - 1), sims)
  colnames(out) <- c("estimate", paste(conf.level * 100, "% CI Lower", sep = ""),
                     paste(conf.level * 100, "% CI Upper", sep = ""))
  rn <- rn2 <- NULL
  for(rr in 2:r){
    rn <- c(rn, c(paste("Initial Disparity   (", levels(y.data[, group])[1],
                        " vs ", levels(y.data[, group])[rr], ")", sep = ""),
                  paste("Disparity Remaining (", levels(y.data[, group])[1],
                        " vs ", levels(y.data[, group])[rr], ")", sep = ""),
                  paste("Disparity Reduction (", levels(y.data[, group])[1],
                        " vs ", levels(y.data[, group])[rr], ")", sep = "")))
    rn2 <- c(rn2, levels(y.data[, group])[rr])
  }
  
  summary0 <- mclapply(1:sims, combine.b, fit.r = fit.r, fit.x = NULL, fit.m = fit.m, fit.y = fit.y,
                       cluster = cluster, func = "mmi", mc.cores = mc.cores)
  out.full <- simplify2array(summary0)
  ind.alphar <- seq(4, 5 * (r - 1), 5)
  ind.segamma <- seq(5, 5 * (r - 1), 5)
  ind.exclude <- c(ind.alphar, ind.segamma)
  
  out[, 1] <- combine(fit.r = fit.r, fit.x = NULL, fit.m = fit.m, fit.y = fit.y, func = "mmi", weights = weights)[- ind.exclude]
  out[, 2] <- apply(out.full[- ind.exclude, ], 1, quantile, prob = (1 - conf.level)/2, na.rm = TRUE)
  out[, 3] <- apply(out.full[- ind.exclude, ], 1, quantile, prob = 1/2 + conf.level/2, na.rm = TRUE)
  all.out <- out.full[- ind.exclude, ]
  rownames(out) <- rownames(all.out) <- rn
  
  alpha.r <- t(matrix(out.full[ind.alphar, ], ncol = sims))
  se.gamma <- t(matrix(out.full[ind.segamma, ], ncol = sims))
  colnames(alpha.r) <- colnames(se.gamma) <- rn2

  if(long){
    out <- list(result = out, all.result = all.out)
  } else {
    out <- list(result = out)
  }
  class(out) <- "mmi"
  return(out)
}

Try the causal.decomp package in your browser

Any scripts or data that you put into this service are public.

causal.decomp documentation built on Aug. 27, 2025, 5:11 p.m.