Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(cercospoRa)
library(data.table)
## ----prep_wdata---------------------------------------------------------------
# classify to data.table
wthr <- data.table(weathr)
# Use POSIXct formatted time.
wthr[,Time := as.POSIXct(paste0(Datum, " ",Stunde,":00"),tz = "UTC")]
# Nominate Latitude and Longitude location of the weather station.
# While not needed in cercospoRa some plant disease models will use location to
# decide the closest weather station to pull weather from
wthr[, c("lon","lat") := list(9.916,51.41866)]
# weather is hourly and will error if we don't specify a standard deviation of
# weather direction. This is intentional to force the user to decide how variable
# the wind direction data could be.
wthr[, wd_std := 20]
# remove all data after September as it contains missing data
wthr <- wthr[Datum < as.POSIXct("2022-10-01")]
# set NA wind speed values to zero
wthr[is.na(WG200), WG200 := 0]
# set NA wind direction values to 20 degrees.
# Wind is not important for this model
wthr[is.na(WR200),WR200 := 20]
## ----format_wdata-------------------------------------------------------------
wthr <- format_weather(wthr,
POSIXct_time = "Time",
time_zone = "UTC",
temp = "T200",
rain = "N100",
rh = "F200",
wd = "WR200",
ws = "WG200",
station = "Station",
lon = "lon",
lat = "lat",
wd_sd = "wd_std",
data_check = FALSE # this stops the function from checking for faults
)
# As the data is formatted closely enough for what is expected for the model.
# We can elect to turn the data_check off so
## -----------------------------------------------------------------------------
cercospoRa::calc_epidemic_onset(start = as.POSIXct("2022-04-25",tz = "UTC"),
end = as.POSIXct("2022-09-30",tz = "UTC"),
c_closure = as.POSIXct("2022-07-01",tz = "UTC"),
weather = wthr)
## -----------------------------------------------------------------------------
# Get file location of example rasters with LAI values
image_files <- list.files(system.file("extdata", "uav_img",package = "cercospoRa"),
pattern = "tif",
full.names = TRUE)
# Read in data and check for consistency
epidemic_onset_param <-
read_sb_growth_parameter(img_files = image_files,
img_dates = as.POSIXct(c("2022-06-14","2022-06-28"),
tz = "UTC"),
target_res = 10)
epidemic_onset_param
## -----------------------------------------------------------------------------
param_rxt <- calc_r_x0(epidemic_onset_param,
min_r = 0.02,
max_r = 0.05,
k = 6)
## -----------------------------------------------------------------------------
canopy_closure <- calc_c_closure(param_rxt,
x1 = 1.3,
k=6)
## -----------------------------------------------------------------------------
epidemic_onset_map <-
calc_epidemic_onset_from_image(start =as.POSIXct("2022-04-25",tz = "UTC"),
end = as.POSIXct("2022-09-30",tz = "UTC"),
c_closure = canopy_closure,
weather = wthr)
epidemic_onset_map
## -----------------------------------------------------------------------------
terra::plot(epidemic_onset_map)
## -----------------------------------------------------------------------------
as.POSIXct(terra::values(epidemic_onset_map)[120:130],
tz = "UTC",
origin = "1970-01-01")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.