R/simulator.R

Defines functions makeWeightMatrix makeSparseMatrix compareNkEstimate makeRdsSample updateLambdas

Documented in makeRdsSample

updateLambdas <- function(N.k, n.k, b.k, I.t){
  lambda.k <- rep(0, length(N.k))
  for(i in seq_along(N.k)){
    # i <- 1
    if(N.k[i]!=0){
      potentials <- N.k[i]-n.k[i]
      if(any(potentials<0)) stop('Impossible n.k value')
      lambda <- b.k[i] * potentials * I.t
      
      lambda.k[i] <- ifelse(is.na(lambda), 0, lambda)
    }
  }
  return(lambda.k)
}
## Testing:
# example(makeRdsSample)
# lambda.k <- chords:::updateLambdas(
#   N.k =true.Nks ,
#   n.k = rep(0, length.out = length(true.Nks)),
#   b.k =true.log.bks+log(100) ,
#   I.t=1)
# plot(lambda.k, type='h')



### Generate sample:
## Needs to return an rds.object including:
# I.t
# degree.in
# degree.out
# rds.sample$NS1
# rds.sample$interviewDt

makeRdsSample <- function (N.k, b.k, sample.length) {
  n.ks <- rep(0, length(N.k))
  event.time <- 0
  I.t <- 1
  # Construct null object
  rds.object.simulated <- rdsObjectConstructor(
    rds.sample = data.frame(NS1=rep(NA, sample.length), interviewDt=rep(NA, sample.length)),
    I.t = rep(NA, sample.length),
    degree.in = rep(0, sample.length),
    degree.out = rep(0, sample.length))
  
  # Populate object with RDS sample.
  for(period in seq_len(sample.length)){
    lambda.k <- updateLambdas(N.k, n.ks, b.k, I.t)
    time.to.event <- rexp(1, sum(lambda.k))
    event.time <- event.time + time.to.event
    rds.object.simulated$rds.sample$interviewDt[period] <- event.time
    
    event.type <- rmultinom(1, 1, prob = lambda.k)
    in.degree <-  which(as.logical(event.type))
    rds.object.simulated$degree.in[period] <- in.degree
    n.ks <- n.ks + event.type  
    
    rds.object.simulated$I.t[period] <- I.t
    I.t <- I.t+1
    
    rds.object.simulated$rds.sample$NS1[period] <- in.degree
  }
  return(rds.object.simulated)
}
## Testing:
# rds.simulated.object <- makeRdsSample(N.k =N.k , sample.length = 900L)
# plot(rds.simulated.object$rds.object$rds.sample$interviewDt)


compareNkEstimate <- function(Nk1, Nk2){
#     object1 <- nk.estimates.2
#     object2 <- nk.estimates
  
  if(length(Nk1) > length(Nk2)) {
    .temp <- Nk2
    Nk2 <- Nk1
    Nk1 <- .temp
  }
  len1 <- length(Nk1)
  len2 <- length(Nk2)
  
  # Padding if lengths differ:
  if(len1!= len2){
    Nk1[(length(Nk1)+1):len2] <- 0
  }

  y.lim <- max(c(Nk2,Nk1))
  plot(Nk2, type='h', lwd=2, main='N_k',ylim=c(0,y.lim))
  points(Nk1, col='red', type='h')
  
  return(list(max1=max(Nk2/Nk1, na.rm=TRUE),
              min=min(Nk2/Nk1, na.rm=TRUE)))
}





## Sketch:
# (1) Generate weak matrix: 
#   - Draw edge indicators iid to all other nodes (p= z/N=10/2000)
#   - Draw edge weight from Unif[0,1]
# (2) Generate strong matrix:
#   - Draw edge indicators iid to all other nodes (p= z/N=2/2000)
#   - Draw edge weight from Unif[0,10]
# (3) Set edge weights as the sum of (1) and (2) matrices.
# (4) Initialize snowball from arbitrary individual.
# (5) Update sampling rates for all individuals:
#   - An individuals sampling rate is the sum of edge weights to the snowball.
# (6) Draw sample time.
#   - Draw from exp with rate equal sum of all non recruited individuals.
# (7) Draw individual.
#   - Draw from multinomial with propabilities proportional to the rates of individuals not recruited.
# (8) Update snowball.
# (9) Repeat (5)-(8) until N=2000.


# Generate aquiantance network:
makeSparseMatrix <- function(mean, pop.size, weight.range){
  weak.prob <- mean/pop.size
  weak.edge.index <- arrayInd(
    which(as.logical(
      rbinom(choose(pop.size, 2), 1, weak.prob)
      )),
  .dim = c(pop.size, pop.size))
  
  weak.edge.index <- t(apply(weak.edge.index, 1, sort))
  weak.edges.n <- nrow(weak.edge.index)
  weak.A <- sparseMatrix(i=weak.edge.index[,1],
                         j = weak.edge.index[,2],
                         symmetric = TRUE,
                         x=runif(weak.edges.n, max = weight.range),
                         dims = c(pop.size, pop.size))
  return(weak.A)  
}
## Testing
# .m <- 2
# .pop.size <- 2e3
# .weight.range <- 1
# sum(makeSparseMatrix(.m, .pop.size, .weight.range)!=0)
# Matrix::isSymmetric(chords:::makeSparseMatrix(.m, .pop.size, .weight.range)!=0)


makeWeightMatrix <- function(means, pop.size){
  stopifnot(length(means)==2)
  
  weak.mean <- means['weak']
  strong.mean <- means['strong']
  
  weak.A <- makeSparseMatrix(weak.mean, pop.size, weight.range = 1)
  strong.A <- makeSparseMatrix(strong.mean, pop.size, weight.range = 10)
  A <- weak.A + strong.A  
  return(A)
}
## Testing:
# pop.size <- 2e3
# means <- c(weak=10, strong=2)
# .test <- makeWeightMatrix(means, pop.size)
# dim(.test)

Try the chords package in your browser

Any scripts or data that you put into this service are public.

chords documentation built on May 30, 2017, 3:39 a.m.