Nothing
library(testthat) # load testthat package
library(cities) # load our package
# Test whether the output is a data frame
test_that("data_generator() returns a list data frame", {
total_data = 3
reference_id = 1
threshold = NA
timepoints = c(0,24,48,72,96,120,144)
IR_display = TRUE
delta_adjustment_in = c(0,1)
n_patient_ctrl = 120
n_patient_expt = 150
n_patient_vector = c(n_patient_ctrl, n_patient_expt)
n_total = sum(n_patient_vector)
mean_control = c(0,0,0,0,0,0,0)
mean_treatment = c(0,0.1,0.2,0.4,0.6,0.8,1)
mean_list = list(mean_control, mean_treatment)
sigma_ar_vec = c(1, 1)
pacf_list = list(c(-0.2, 0.4),
c(-0.2, 0.4))
beta_list = list(c(1.25, 1.25),
c(1.25, 1.25))
covariate_df = NA
# LoE & EE
up_good = "Up"
p_loe_max = 0.75
z_l_loe = -7
z_u_loe = -1
p_ee_max = 0.1
z_l_ee = 4
z_u_ee = 10
# Admin & AE
p_admin_ctrl = 0.02
p_admin_expt = 0.02
p_admin = c(p_admin_ctrl, p_admin_expt)
prob_ae_ctrl = 0.7
prob_ae_expt = 0.9
prob_ae = c(prob_ae_ctrl, prob_ae_expt)
rate_dc_ae_ctrl = 0.1
rate_dc_ae_expt = 0.1
rate_dc_ae = c(rate_dc_ae_ctrl, rate_dc_ae_expt)
starting_seed_val = 1
static_output = TRUE
data_out = data_generator(n_patient_vector = n_patient_vector,
p_loe_max = p_loe_max, z_l_loe = z_l_loe, z_u_loe = z_u_loe,
p_ee_max = p_ee_max, z_l_ee = z_l_ee, z_u_ee = z_u_ee, timepoints = timepoints,
pacf_list = pacf_list, sigma_ar_vec = sigma_ar_vec, mean_list = mean_list,
beta_list = beta_list, p_admin = p_admin, rate_dc_ae = rate_dc_ae,
prob_ae = prob_ae, seed_val = starting_seed_val, reference_id = reference_id,
plot_po = FALSE, up_good = up_good, threshold = threshold,
delta_adjustment_in = delta_adjustment_in,
covariate_df = covariate_df)
expect_type(data_out, "list")
})
# Test whether the output is a data frame with NA for beta_list
test_that("data_generator() returns a list data frame", {
total_data = 3
reference_id = 1
threshold = NA
timepoints = c(0,24,48,72,96,120,144)
IR_display = TRUE
delta_adjustment_in = c(0,1)
n_patient_ctrl = 120
n_patient_expt = 150
n_patient_vector = c(n_patient_ctrl, n_patient_expt)
n_total = sum(n_patient_vector)
mean_control = c(0,0,0,0,0,0,0)
mean_treatment = c(0,0.1,0.2,0.4,0.6,0.8,1)
mean_list = list(mean_control, mean_treatment)
sigma_ar_vec = c(1, 1)
pacf_list = list(c(-0.2, 0.4),
c(-0.2, 0.4))
beta_list = NA
covariate_df = NA
# LoE & EE
up_good = "Up"
p_loe_max = 0.75
z_l_loe = -7
z_u_loe = -1
p_ee_max = 0.1
z_l_ee = 4
z_u_ee = 10
# Admin & AE
p_admin_ctrl = 0.02
p_admin_expt = 0.02
p_admin = c(p_admin_ctrl, p_admin_expt)
prob_ae_ctrl = 0.7
prob_ae_expt = 0.9
prob_ae = c(prob_ae_ctrl, prob_ae_expt)
rate_dc_ae_ctrl = 0.1
rate_dc_ae_expt = 0.1
rate_dc_ae = c(rate_dc_ae_ctrl, rate_dc_ae_expt)
starting_seed_val = 1
static_output = TRUE
data_out = data_generator(n_patient_vector = n_patient_vector,
p_loe_max = p_loe_max, z_l_loe = z_l_loe, z_u_loe = z_u_loe,
p_ee_max = p_ee_max, z_l_ee = z_l_ee, z_u_ee = z_u_ee, timepoints = timepoints,
pacf_list = pacf_list, sigma_ar_vec = sigma_ar_vec, mean_list = mean_list,
beta_list = beta_list, p_admin = p_admin, rate_dc_ae = rate_dc_ae,
prob_ae = prob_ae, seed_val = starting_seed_val, reference_id = reference_id,
plot_po = FALSE, up_good = up_good, threshold = threshold,
delta_adjustment_in = delta_adjustment_in,
covariate_df = covariate_df)
expect_type(data_out, "list")
})
# Test whether the output is a data frame with custom covariances and covariates
test_that("data_generator() returns a list data frame", {
p_admin_expt = 0.02
p_admin_ctrl = 0.03
prob_ae_expt = 0.9
rate_dc_ae_expt = 0.1
prob_ae_ctrl = 0.7
rate_dc_ae_ctrl = 0.1
n_patient_expt = 120
n_patient_expt2 = 100
n_patient_ctrl = 150
mean_treatment = c(0, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.1, 1.2, 1.3, 1.4, 1.5)
mean_treatment2 = 2*c(0, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.1, 1.2, 1.3, 1.4, 1.5)
mean_control = rep(0, length(mean_treatment))
beta_control = c(1.25, 1.25, 1)
beta_expt = c(1.25, 1.25, 1)
beta_expt2 = c(1.25, 1.25, 1)
p_loe_max = 0.6
z_l_loe = -5
z_u_loe = -1.2
p_ee_max = 0.15
z_l_ee = 2.5
z_u_ee = 4.5
timepoints = c(0:(length(mean_treatment)-1))*24
pacf_vec = c(0.5, -0.2)
sigma_ar = 1
up_good = "Up"
delta_adjustment_in = NA
threshold = NA
mean_list = list(mean_control, mean_treatment, mean_treatment2)
p_admin = c(p_admin_ctrl, p_admin_expt, p_admin_expt)
rate_dc_ae = c(rate_dc_ae_ctrl, rate_dc_ae_expt, rate_dc_ae_expt)
prob_ae = c(prob_ae_ctrl, prob_ae_expt,prob_ae_expt)
n_patient_vector = c(n_patient_ctrl, n_patient_expt, n_patient_expt2)
sigma_ar_vec = NA
total_data = 3
reference_id = 1
starting_seed_val = 1
A = matrix(runif(length(timepoints)^2)*2-1, ncol=length(timepoints))
Sigma = t(A) %*% A
pacf_list = list(Sigma,
Sigma,
Sigma)
n_total = sum(n_patient_vector)
beta_list = list(beta_control, beta_expt, beta_expt2)
covariate_df = data.frame(continuous_1 = (rnorm(n = n_total, mean = 0, sd = 1)),
continuous_2 = (rnorm(n = n_total, mean = 0, sd = 1)),
binary_1 = rbinom(n = n_total, size = 1, prob = 0.5))
data_out = data_generator(n_patient_vector = n_patient_vector,
p_loe_max = p_loe_max, z_l_loe = z_l_loe, z_u_loe = z_u_loe,
p_ee_max = p_ee_max, z_l_ee = z_l_ee, z_u_ee = z_u_ee, timepoints = timepoints,
pacf_list = pacf_list, sigma_ar_vec = sigma_ar_vec, mean_list = mean_list,
beta_list = beta_list, p_admin = p_admin, rate_dc_ae = rate_dc_ae,
prob_ae = prob_ae, seed_val = starting_seed_val, reference_id = reference_id,
plot_po = FALSE, up_good = up_good, threshold = threshold,
delta_adjustment_in = delta_adjustment_in,
covariate_df = covariate_df)
expect_type(data_out, "list")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.